Bowles Norman (mathicon8)
Kabuki syndrome (KS) is a well-recognized disorder characterized by postnatal growth deficiency, dysmorphic facial features, skeletal anomalies, and intellectual disability. The syndrome is caused by KMT2D gene mutations or less frequently KDM6A gene mutations or deletions. We report a systematic evaluation of KS patients from Campania region of Italy; data were also compared with literature ones. We collected data of 15 subjects (8 males and 7 females with age range 10-26 years; mean age 16.9 years) with confirmed diagnosis of KS, representing the entire cohort of patients from Campania Region. check details Each patient performed biochemical testing and instrumental investigation. Neuro-intellectual development, cranio-facial dysmorphisms, and multisystem involvement data were collected retrospectively. For each category, type of defects and frequency of the anomalies were analyzed. Our observation shows that KS patients from Campania region have some particular and previously underscored, neurological and immunological res could help gestalt diagnosis (hypertelorism, broad nasal bridge, micrognathia, tooth agenesis, cutaneous haemangiomas and strabismus) • Higher prevalence of autoimmune disorders than previously reported • Particular neurological features are present in this cohort (EEG and MRI brain abnormalities).Salt water, in addition to being a naturally corrosive environment, also includes factors such as temperature, pressure, and the presence of the microbial community in the environment that influence degradation processes on metal surfaces. The presence or absence of water flow over the metal surfaces is also an important aspect that influences the corrosion of metals. The objective of this study was to evaluate the presence or absence of salt water flow in the formation of biofilms grown in 316L stainless steel coupons. For this, the 316L stainless steel coupons were exposed in two different microcosms, the first being a system with continuous salt water flow, and the second without salt water flow system. The results of the sequencing of the 16S rDNA genes showed a clear difference in structures and diversity between the evaluated biofilms. There was greater abundance and diversity in the "In Flux" system when compared to the "No Flux" biofilm. The analysis of bacterial diversity showed a predominance of the Gammaproteobacteria class in both systems. However, at lower taxonomic levels, there were considerable differences in representativeness. Representatives of Vibrionales, Alteromonadales, Oceanospirillales, and Flavobacteriales were predominant in "No Flux", whereas in "In Flux" there was a greater representation of Alteromonadales, Rhodobacterales, and Saprospirales. These findings help to understand how the flow of water influences the dynamics of the formation of microbial biofilms on metal surfaces, which will contribute to the choice of strategies used to mitigate microbial biofouling.The high phenolic content of Palm Oil Mill Effluent (POME) constitutes an environmental concern. In this study, laccase producing microorganisms were isolated from POME samples collected in Côte d'Ivoire for their possible use in POME treatment. Strain showing the highest laccase activity was identified by ITS1-5.8S-ITS2 region sequencing as Trametes polyzona. A maximum laccase production (156.3 U/mL) was obtained after 10 days of incubation under shaking condition, at 37 °C, pH 4, with starch (1%), tryptone (0.3%) and 10 mM of guaiacol. The partially purified laccase of 31 kDa exhibited maximum activity at 50 °C and pH 4.5 with a Km for guaiacol and Vmax of 0.7 mM and 0.04 mM/min, respectively. Metals, SDS and EDTA did not inhibit his activity. Used as biotreatment agent, T. polyzona MPS1-3 reduced COD, total suspended solids, total solids and total phenolics by 16.03%, 70.15%, 38.9%, 50.84%, respectively, for sterilized POME and by 13.09%, 58.07%, 36.53%, 42.05% for unsterilized POME. These results showed the promisi