Stephens Dwyer (lyreperson9)

HN3 is a unique liquid energetic material that exhibits ultrafast detonation chemistry and a transition to metallic states during detonation. Selleck Pelabresib We combine the Chebyshev interaction model for efficient simulation (ChIMES) many-body reactive force field and the extended-Lagrangian multiscale shock technique molecular dynamics method to calculate the detonation properties of HN3 with the accuracy of Kohn-Sham density-functional theory. ChIMES is based on a Chebyshev polynomial expansion and can accurately reproduce density-functional theory molecular dynamics (DFT-MD) simulations for a wide range of unreactive and decomposition conditions of liquid HN3. We show that addition of random displacement configurations and the energies of gas-phase equilibrium products in the training set allows ChIMES to efficiently explore the complex potential energy surface. Schemes for selecting force field parameters and the inclusion of stress tensor and energy data in the training set are examined. Structural and dynamical properties and chemistry predictions for the resulting models are benchmarked against DFT-MD. We demonstrate that the inclusion of explicit four-body energy terms is necessary to capture the potential energy surface across a wide range of conditions. Our results generally retain the accuracy of DFT-MD while yielding a high degree of computational efficiency, allowing simulations to approach orders of magnitude larger time and spatial scales. The techniques and recipes for MD model creation we present allow for direct simulation of nanosecond shock compression experiments and calculation of the detonation properties of materials with the accuracy of Kohn-Sham density-functional theory.To advance our quest to understand the role of low energy electrons in biomolecular systems, we performed investigations on dissociative electron attachment (DEA) to gas-phase N-ethylformamide (NEF) and N-ethylacetamide (NEA) molecules. Both molecules contain the amide bond, which is the linkage between two consecutive amino acid residues in proteins. Thus, their electron-induced dissociation can imitate the resonant behavior of the DEA process in more complex biostructures. Our experimental results indicate that in these two molecules, the dissociation of the amide bond results in a double resonant structure with peaks at ∼5 eV and 9 eV. We also determined the energy position of resonant states for several negative ions, i.e., the other dissociation products from NEF and NEA. Our predictions of dissociation channels were supported by density functional theory calculations of the corresponding threshold energies. Our results and those previously reported for small amides and peptides imply the fundamental nature for breakage of the amide bond through the DEA process.Phonon contributions to organic crystal structures and thermochemical properties can be significant, but computing a well-converged phonon density of states with lattice dynamics and periodic density functional theory (DFT) is often computationally expensive due to the need for large supercells. Using semi-empirical methods like density functional tight binding (DFTB) instead of DFT can reduce the computational costs dramatically, albeit with noticeable reductions in accuracy. This work proposes approximating the phonon density of states via a relatively inexpensive DFTB supercell treatment of the phonon dispersion that is then corrected by shifting the individual phonon modes according to the difference between the DFT and DFTB phonon frequencies at the Γ-point. The acoustic modes are then computed at the DFT level from the elastic constants. In several small-molecule crystal test cases, this combined approach reproduces DFT thermochemistry with kJ/mol accuracy and 1-2 orders of magnitude less computational effort. Finally, this approach is applied to computing the free energy differences between the five crystal polymorphs of oxalyl dihydrazide.Living organisms a