Duelund Emborg (lizardpower4)
Functional food webs are essential for the successful conservation of ecological communities, and in terrestrial systems, food webs are built on a foundation of coevolved interactions between plants and their consumers. Here, we collate published data on host plant ranges and associated host plant-Lepidoptera interactions from across the contiguous United States and demonstrate that among ecosystems, distributions of plant-herbivore interactions are consistently skewed, with a small percentage of plant genera supporting the majority of Lepidoptera. Plant identities critical for retaining interaction diversity are similar and independent of geography. Given the importance of Lepidoptera to food webs and ecosystem function, efficient and effective restoration of degraded landscapes depends on the inclusion of such 'keystone' plants.Realizing programmable assembly and reconfiguration of small objects holds promise for technologically-significant applications in such fields as micromechanical systems, biomedical devices, and metamaterials. Although capillary forces have been successfully explored to assemble objects with specific shapes into ordered structures on the liquid surface, reconfiguring these assembled structures on demand remains a challenge. Here we report a strategy, bioinspired by Anurida maritima, to actively reconfigure assembled structures with well-defined selectivity, directionality, robustness, and restorability. This approach, taking advantage of optocapillarity induced by photodeformation of floating liquid crystal polymer actuators, not only achieves programmable and reconfigurable two-dimensional assembly, but also uniquely enables the formation of three-dimensional structures with tunable architectures and topologies across multiple fluid interfaces. This work demonstrates a versatile approach to tailor capillary interaction by optics, as well as a straightforward bottom-up fabrication platform for a wide range of applications.Characterizing and controlling the out-of-equilibrium state of nanostructured Mott insulators hold great promises for emerging quantum technologies while providing an exciting playground for investigating fundamental physics of strongly-correlated systems. Here, we use two-color near-field ultrafast electron microscopy to photo-induce the insulator-to-metal transition in a single VO2 nanowire and probe the ensuing electronic dynamics with combined nanometer-femtosecond resolution (10-21 m ∙ s). We take advantage of a femtosecond temporal gating of the electron pulse mediated by an infrared laser pulse, and exploit the sensitivity of inelastic electron-light scattering to changes in the material dielectric function. By spatially mapping the near-field dynamics of an individual nanowire of VO2, we observe that ultrafast photo-doping drives the system into a metallic state on a timescale of ~150 fs without yet perturbing the crystalline lattice. Due to the high versatility and sensitivity of the electron probe, our method would allow capturing the electronic dynamics of a wide range of nanoscale materials with ultimate spatiotemporal resolution.Hypothalamic neurons including proopiomelanocortin (POMC)-producing neurons regulate body weights. The non-motile primary cilium is a critical sensory organelle on the cell surface. An association between ciliary defects and obesity has been suggested, but the underlying mechanisms are not fully understood. Here we show that inhibition of ciliogenesis in POMC-expressing developing hypothalamic neurons, by depleting ciliogenic genes IFT88 and KIF3A, leads to adulthood obesity in mice. In contrast, adult-onset ciliary dysgenesis in POMC neurons causes no significant change in adiposity. In developing POMC neurons, abnormal cilia formation disrupts axonal projections through impaired lysosomal protein degradation. Notably, maternal nutrition and postnatal leptin surge have a profound impact on ciliogenesis in the hypothalamus of neonatal mice; thr