Kromann McDaniel (libradonna96)

ns designed to improve their wellbeing. Assistance addressing childcare, mental health, and financial planning may be especially useful.Logic relationship analysis is a data mining method that comprehensively detects item triplets that satisfy logic relationships from a binary matrix dataset, such as an ortholog table in comparative genomics. Thanks to recent technological advancements, many binary matrix datasets are now being produced in genomics, transcriptomics, epigenomics, metagenomics, and many other fields for comparative purposes. However, regardless of presumed interpretability and importance of logic relationships, existing data mining methods are not based on the framework of statistical hypothesis testing. That means, the type-1 and type-2 error rates are neither controlled nor estimated. Here, we developed Logicome Profiler, which exhaustively detects statistically significant triplet logic relationships from a binary matrix dataset (Logicome means ome of logics). To test all item triplets in a dataset while avoiding false positives, Logicome Profiler adjusts a significance level by the Bonferroni or Benjamini-Yekutieli method for the multiple testing correction. Its application to an ocean metagenomic dataset showed that Logicome Profiler can effectively detect statistically significant triplet logic relationships among environmental microbes and genes, which include those among urea transporter, urease, and photosynthesis-related genes. Beyond omics data analysis, Logicome Profiler is applicable to various binary matrix datasets in general for finding significant triplet logic relationships. The source code is available at https//github.com/fukunagatsu/LogicomeProfiler.As genotyping technologies continue to evolve, so have their throughput and multiplexing capabilities. In this study, we demonstrate a new PCR-based genotyping technology that multiplexes thousands of single nucleotide polymorphism (SNP) markers with high-throughput capabilities in a simple protocol using a two-step PCR approach. The bioinformatic pipeline is user friendly and yields results that are intuitive to interpret. This method was tested on two recombinant inbred line (RIL) populations that had previous genotyping data from the Illumina Infinium assay for Triticum aestivum L. and the two data sets were found to be 100% in agreement. The genotyping by multiplexed sequencing (GMS) protocol multiplexes 1,656 wheat SNP markers, 207 syntenic barley SNP markers, and 49 known informative markers, which generate a possible 2,433 data points (including homoeoalleles and paralogs). This genotyping approach has the flexibility of being sequenced on either the Ion Torrent or Illumina next generation sequencing (NGS) platforms. Products are the result of direct sequencing and are therefore more reliable than scatter plot analysis which is the output of other genotyping methods such as the Illumina Infinium assay, komeptitive allele specific PCR and other like technologies.Industrial networks are currently the only communication means designed for real-time systems used in industry. Networked control systems (NCS) are still important and commonly used type of such systems operating on shop floor. As a computerized node of NCS, a programmable logic controller (PLC) is usually used. In most cases, contemporary devices of such kind are equipped with more than one network interface of various types. Typically, only one interface is activated in NCS. Sometimes, the other is used for communication between NCS and supervisory systems. Occasionally, it is additionally involved in the data transmission in the factory IT systems. In general, however, using a single network interface is a more common solution. In this paper, the mutual utilization of more than one interface is discussed in order to back up the NCS network and to manage the node-related traffic within the scope of higher level services. The question of dependability of such a system from the el