Abrams Nance (lawyercouch78)
An increased frequency of TRP1-specific regulatory T (Treg) cells was present in chimeras with increased deletion of TRP1-specific thymocytes. Only chimeras that lacked GILT in both TECs and hematopoietic cells had a high conventional T/Treg cell ratio and were protected from melanoma challenge. Thus, GILT expression in thymic APCs, and mTECs in particular, preferentially facilitates MHC class II-restricted presentation, negative selection, and increased Treg cells, resulting in a diminished antitumor response to a tissue-restricted, melanoma-associated self-antigen. Copyright © 2020 by The American Association of Immunologists, Inc.CTLs release cytotoxic proteins such as granzymes and perforin through fusion of cytotoxic granules (CG) at the target cell interface, the immune synapse, to kill virus-infected and tumorigenic target cells. A characteristic feature of these granules is their acidic pH inside the granule lumen, which is required to process precursors of granzymes and perforin to their mature form. However, the role of acidic pH in CG maturation, transport, and fusion is not understood. We demonstrate in primary murine CTLs that the a3-subunit of the vacuolar-type (H+)-adenosine triphosphatase is required for establishing a luminal pH of 6.1 inside CG using ClopHensorN(Q69M), a newly generated CG-specific pH indicator. Knockdown of the a3-subunit resulted in a significantly reduced killing of target cells and a >50% reduction in CG fusion in total internal reflection fluorescence microscopy, which was caused by a reduced number of CG at the immune synapse. Superresolution microscopy revealed a reduced interaction of CG with the microtubule network upon a3-subunit knockdown. Finally, we find by electron and structured illumination microscopy that knockdown of the a3-subunit altered the diameter and density of individual CG, whereas the number of CG per CTL was unaffected. We conclude that the a3-subunit of the vacuolar adenosine triphosphatase is not only responsible for the acidification of CG, but also contributes to the maturation and efficient transport of the CG to the immune synapse. Copyright © 2020 by The American Association of Immunologists, Inc.ADAMTS-1 is an extracellular protease with critical roles in organogenesis and angiogenesis. Here we demonstrate a functional convergence of ADAMTS-1 and the transmembrane heparan sulfate proteoglycan syndecan-4 in influencing adhesion, migration and angiogenesis. Knockdown of ADAMTS-1 in endothelial cells resulted in a parallel reduction in cell surface syndecan-4, attributable to increased matrix metalloproteinase-9 (MMP9) activity. Knockdown of either ADAMTS-1 or syndecan-4 increased cellular responses to vascular endothelial growth factor A isoform VEGFA164, and increased ex vivo aortic ring microvessel sprouting. On fibronectin, knockdown of either protein enhanced migration and promoted formation of long α5 integrin-containing fibrillar adhesions. However, integrin α5 null cells still showed increased migration in response to ADAMTS-1 and syndecan-4 siRNA treatment. Plating of naïve endothelial cells on cell-conditioned matrix from ADAMTS-1 and syndecan-4 knockdown cells demonstrated that the altered adhesive behaviour was matrix dependent, and this correlated with a lack of expression of fibulin-1 an extracellular matrix co-factor for ADAMTS-1 that is known to inhibit migration. These findings support the notion that ADAMTS-1 and syndecan-4 are functionally interconnected in regulating cell migration and angiogenesis, via collaboration with MMP9 and fibulin-1.This article has an associated First Person interview with the first author of the paper. © 2020. Published by The Company of Biologists Ltd.Bacterial cell division is initiated by the midcell assembly of polymers of the tubulin-like GTPase FtsZ. The FtsZ ring (Z-ring) is a discontinuous structure made of dynamic patches of FtsZ that undergo treadmilling motion. Roughly a dozen additional essential