McKinnon Richter (laughhook2)
With the burgeoning of wearable devices and passive body/brain-computer interfaces (B/BCIs), automated stress monitoring in everyday settings has gained significant attention recently, with applications ranging from serious games to clinical monitoring. With mobile users, however, challenges arise due to other overlapping (and potentially confounding) physiological responses (e.g., due to physical activity) that may mask the effects of stress, as well as movement artifacts that can be introduced in the measured signals. For example, the classical increase in heart rate can no longer be attributed solely to stress and could be caused by the activity itself. This makes the development of mobile passive B/BCIs challenging. In this paper, we introduce PASS, a multimodal database of Physical Activity and StresS collected from 48 participants. Participants performed tasks of varying stress levels at three different activity levels and provided quantitative ratings of their perceived stress and fatigue levels. To manipulate stress, two video games (i.e., a calm exploration game and a survival game) were used. Peripheral physical activity (electrocardiography, electrodermal activity, breathing, skin temperature) as well as cerebral activity (electroencephalography) were measured throughout the experiment. A complete description of the experimental protocol is provided and preliminary analyses are performed to investigate the physiological reactions to stress in the presence of physical activity. The PASS database, including raw data and subjective ratings has been made available to the research community at http//musaelab.ca/pass-database/. It is hoped that this database will help advance mobile passive B/BCIs for use in everyday settings. To assess the safety and efficacy of pre-emptive treatment of optical coherence tomography- (OCT-) derived vulnerable, non-flow-limiting, non-culprit lesions in patients with myocardial infarction (MI). Intracoronary imaging with OCT can aid in the decision to treat non-flow-limiting lesions by identifying vulnerable plaques. Pre-emptive treatment of these lesions might improve patient outcome by "sealing" these plaques. Bioresorbable vascular scaffolds (BVS) have theoretical benefit for this treatment because they dissolve completely over time. In patients presenting with MI, non-culprit lesions with a fractional flow reserve ≥0.8 were imaged with OCT. Vulnerable plaques were randomised to either percutaneous coronary intervention (PCI) with bioresorbable vascular scaffold (BVS) placement or optimal medicinal therapy (OMT). The primary outcome was a composite of all-cause mortality, non-fatal MI, and unplanned revascularisation at 1-year follow-up. The trial was stopped prematurely after retraction fgistered under https// on 08-12-2015.Stream and river restoration practices have become common in many parts of the world. To answer the question whether such restoration measures improve freshwater biotic assemblages or functions over time, and if not, can general reasons be identified for such outcomes, we conducted a literature survey and review of studies in which different types of stream restorations were conducted and outcomes assessed. In the first paper, we reviewed studies of culvert restorations, acid mine drainage or industrial pollution restoration; and urban stream restoration projects. Here, we review studies of restoration via dam removal, changes in dam operation or fish passage structures; instream habitat modification; riparian restoration or woody material addition; channel restoration and multiple restoration measures and develop some general conclusions from these reviews. Biomonitoring in different studies detected improvements for some restoration measures; other studies found minimal or no statistically significant increases in biotic assemblage richness, abundances or functions. In some cases, untreate