Hodge Bock (lanbell29)
ge of electrochemical reactions, including those requiring water, our results are likely useful for mechanistic understanding and tuning of such reactions.Drug-induced torsade de pointes (TdP) is a life-threatening ventricular arrhythmia responsible for the withdrawal of many drugs from the market. Although currently used TdP risk-assessment methods are effective, they are expensive and prone to produce false positives. In recent years, in silico cardiac simulations have proven to be a valuable tool for the prediction of drug effects. The objective of this work is to evaluate different biomarkers of drug-induced proarrhythmic risk and to develop an in silico risk classifier. Cellular simulations were performed using a modified version of the O'Hara et al. ventricular action potential model and existing pharmacological data (IC50 and effective free therapeutic plasma concentration, EFTPC) for 109 drugs of known torsadogenic risk (51 positive). For each compound, four biomarkers were tested Tx (drug concentration leading to a 10% prolongation of the action potential over the EFTPC), TqNet (net charge carried by ionic currents when exposed to 10 times the EFTPC wi, we built a ready-to-use tool (based on more than 450 000 simulations), which can be used to quickly assess the proarrhythmic risk of a compound. In conclusion, our in silico tool can be useful for the preclinical assessment of TdP-risk and to reduce costs related with new drug development. The TdP risk-assessment tool and the software used in this work are available at https//riunet.upv.es/handle/10251/136919.The ability of coronaviruses to infect humans is invariably associated with their binding strengths to human receptor proteins. Both SARS-CoV-2, initially named 2019-nCoV, and SARS-CoV were reported to utilize angiotensin-converting enzyme 2 (ACE2) as an entry receptor in human cells. To better understand the interplay between SARS-CoV-2 and ACE2, we performed computational alanine scanning mutagenesis on the "hotspot" residues at protein-protein interfaces using relative free energy calculations. Our data suggest that the mutations in SARS-CoV-2 lead to a greater binding affinity relative to SARS-CoV. In addition, our free energy calculations provide insight into the infectious ability of viruses on a physical basis and also provide useful information for the design of antiviral drugs.Human G protein-coupled receptors (hGPCRs) are the most frequent targets of Food and Drug Administration (FDA)-approved drugs. Structural bioinformatics, along with molecular simulation, can support structure-based drug design targeting hGPCRs. In this context, several years ago, we developed a hybrid molecular mechanics (MM)/coarse-grained (CG) approach to predict ligand poses in low-resolution hGPCR models. The approach was based on the GROMOS96 43A1 and PRODRG united-atom force fields for the MM part. Here, we present a new MM/CG implementation using, instead, the Amber 14SB and GAFF all-atom potentials for proteins and ligands, respectively. The new implementation outperforms the previous one, as shown by a variety of applications on models of hGPCR/ligand complexes at different resolutions, and it is also more user-friendly. Thus, it emerges as a useful tool to predict poses in low-resolution models and provides insights into ligand binding similarly to all-atom molecular dynamics, albeit at a lower computational cost.The accurate prediction of protein-ligand binding affinity is a central challenge in computational chemistry and in-silico drug discovery. The free energy perturbation (FEP) method based on molecular dynamics (MD) simulation provides reasonably accurate results only if a reliable structure is available via high-resolution X-ray crystallography. To overcome the limitation, we propose a sequential prediction protocol using generalized replica exchange with solute tempering (gREST) and FEP. At first, ligand binding poses are predicted using gREST, which weakens pro