Nicholson Fuller (judgeyard5)

The auditory brainstem response (ABR) to stimulus onset has been extensively used to investigate dolphin hearing. The mechanisms underlying this onset response have been thoroughly studied in mammals. In contrast, the ABR evoked by sound offset has received relatively little attention. To build upon previous observations of the dolphin offset ABR, a series of experiments was conducted to (1) determine the cochlear places responsible for response generation and (2) examine differences in response morphologies when using toneburst versus noiseburst stimuli. Measurements were conducted with seven bottlenose dolphins (Tursiops truncatus) using tonebursts and spectrally "pink" broadband noisebursts, with highpass noise used to limit the cochlear regions involved in response generation. Results for normal-hearing and hearing-impaired dolphins suggest that the offset ABR contains contributions from at least two distinct responses. One type of response (across place) might arise from the activation of neural units that are shifted basally relative to stimulus frequency and shares commonalities with the onset ABR. A second type of response (within place) appears to represent a "true" offset response from afferent centers further up the ascending auditory pathway from the auditory nerve, and likely results from synchronous activity beginning at or above the cochlear nucleus.Materials design and discovery are often hampered by the slow pace and materials and human costs associated with Edisonian trial-and-error screening approaches. Recent advances in computational power, theoretical methods, and data science techniques, however, are being manifest in a convergence of these tools to enable in silico materials discovery. see more Here, we present the development and deployment of computational materials data and data analytic approaches for crystalline organic semiconductors. The OCELOT (Organic Crystals in Electronic and Light-Oriented Technologies) infrastructure, consisting of a Python-based OCELOT application programming interface and OCELOT database, is designed to enable rapid materials exploration. The database contains a descriptor-based schema for high-throughput calculations that have been implemented on more than 56 000 experimental crystal structures derived from 47 000 distinct molecular structures. OCELOT is open-access and accessible via a web-user interface at https//oscar.as.uky.edu.Vibrational predissociation processes of the H2O+Ar complex ion following mid-infrared excitations of the OH stretching modes and bending overtone of the H2O+ unit were studied by photofragment ion imaging. The anisotropy parameters, β, of the angular distributions of the photofragment ions were clearly dependent on the type (branch) of rotational excitation, β > 0 for the P-branch excitations, while β less then 0 for the Q-branch excitations, which were consistent with the previous theoretical predictions for the rotationally resolved optical transition of a prolate symmetric top. The translational energy distributions had a similar form, irrespective of the excitation modes. This result suggests that the prepared excited states underwent a common relaxation pathway via the bending or bending overtone state of the H2O+ unit. In addition, the available energy was preferentially distributed into the rotational energy of the H2O+ fragment ions rather than the translational energy. The mechanism of the rotational excitations of the H2O+ fragment ions was discussed based on the steric configuration of the H2O+ and Ar units at the moment of dissociation.The solid electrolyte interphase (SEI) is an insulating film on anode surfaces in Li-ion batteries, which forms via the reaction of Li ions with reduced electrolyte species. The SEI leads to a reduction in the electrochemical current in heterogeneous electrochemical redox reactions at the electrode/electrolyte interface. Hence, the growth of the SEI is, in principle, self-limited. Toward our