Ward McMahon (judgelunge53)

6% and 44.7%, respectively. The subsequent western blot analysis and quantification of band intensity also showed that DcCPR content significantly decreased, consistent with the results of the specific activity test. In a eukaryotic expression assay, the viability of cells expressing DcCPR was significantly higher than the viability of cells expressing green fluorescent protein (GFP) when cells were exposed to imidacloprid or thiamethoxam. These results indicate that DcCPR contributes to D. citri susceptibility to imidacloprid and thiamethoxam. These results indicate that DcCPR contributes to D. citri susceptibility to imidacloprid and thiamethoxam.Systemic acquired resistance (SAR) is a broad-spectrum disease resistance response that can be induced upon infection from pathogens or by chemical treatment, such as with benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH). SAR involves priming for more robust activation of defence genes upon pathogen attack. Whether priming for SAR would involve components of RNA silencing remained unknown. Here, we show that upon leaf infiltration of water, BTH-primed Arabidopsis thaliana plants accumulate higher amounts of mRNA of ARGONAUTE (AGO)2 and AGO3, key components of RNA silencing. The enhanced AGO2 expression is associated with prior-to-activation trimethylation of lysine 4 in histone H3 and acetylation of histone H3 in the AGO2 promoter and with induced resistance to the yellow strain of cucumber mosaic virus (CMV[Y]). The results suggest that priming A. thaliana for enhanced defence involves modification of histones in the AGO2 promoter that condition AGO2 for enhanced activation, associated with resistance to CMV(Y). Consistently, the fold-reduction in CMV(Y) coat protein accumulation by BTH pretreatment was lower in ago2 than in wild type, pointing to reduced capacity of ago2 to activate BTH-induced CMV(Y) resistance. A role of AGO2 in pathogen-induced SAR is suggested by the enhanced activation of AGO2 after infiltrating systemic leaves of plants expressing a localized hypersensitive response upon CMV(Y) infection. In addition, local inoculation of SAR-inducing Pseudomonas syringae pv. maculicola causes systemic priming for enhanced AGO2 expression. Together our results indicate that defence priming targets the AGO2 component of RNA silencing whose enhanced expression is likely to contribute to SAR.The perception of facial and vocal stimuli is driven by sensory input and cognitive top-down influences. Important top-down influences are attentional focus and supramodal social memory representations. The present study investigated the neural networks underlying these top-down processes and their role in social stimulus classification. In a neuroimaging study with 45 healthy participants, we employed a social adaptation of the Implicit Association Test. Attentional focus was modified via the classification task, which compared two domains of social perception (emotion and gender), using the exactly same stimulus set. Supramodal memory representations were addressed via congruency of the target categories for the classification of auditory and visual social stimuli (voices and faces). Functional magnetic resonance imaging identified attention-specific and supramodal networks. Emotion classification networks included bilateral anterior insula, pre-supplementary motor area, and right inferior frontal gyrus. They were pure attention-driven and independent from stimulus modality or congruency of the target concepts. No neural contribution of supramodal memory representations could be revealed for emotion classification. In contrast, gender classification relied on supramodal memory representations in rostral anterior cingulate and ventromedial prefrontal cortices. In summary, different domains of social perception involve different top-down processes which take place in clearly distinguishable neural networks. In order to provide a more comprehensive u