Archer Boone (jokepilot90)

This study aimed to assess the error of different registration techniques and imaging modalities for fusion imaging of the aorta in a standardized setting using a anthropomorphic body phantom. A phantom with the 3D printed vasculature of a patient suffering from an infrarenal aortic aneurysm was constructed. Pulsatile flow was generated via an external pump. CTA/MRA of the phantom was performed, and a virtual 3D vascular model was computed. Subsequently, fusion imaging was performed employing 3D-3D and 2D-3D registration techniques. see more Accuracy of the registration was evaluated from 7 right/left anterior oblique c-arm angulations using the agreement of centerlines and landmarks between the phantom vessels and the virtual 3D virtual vascular model. Differences between imaging modalities were assessed in a head-to-head comparison based on centerline deviation. Statistics included the comparison of means ± standard deviations, student's t-test, Bland-Altman analysis, and intraclass correlation coefficient for iarding imaging modalities, CTA and MRA can be used equivalently. In the realm of registration techniques, the 3D-3D method proved more accurate than did the 2D-3D method. Based on our data, the use of 2D-3D registration for interventions with high registration quality requirements (e.g., fenestrated aortic repair procedures) cannot be fully recommended. Regarding imaging modalities, CTA and MRA can be used equivalently.Single-cell biology is transforming the ability of researchers to understand cellular signaling and identity across medical and biological disciplines. Especially for immune-mediated diseases, a single-cell look at immune cell subtypes, signaling, and activity might yield fundamental insights into the disease etiology, mechanisms, and potential therapeutic interventions. In this review, we highlight recent advances in the field of single-cell RNA profiling and their application to understand renal function in health and disease. With a focus on the immune system, in particular on T cells, we propose some key directions of understanding renal inflammation using single-cell approaches. We detail the benefits and shortcomings of the various technological approaches outlined and give advice on potential pitfalls and challenges in experimental setup and computational analysis. Finally, we conclude with a brief outlook into a promising future for single-cell technologies to elucidate kidney function. Children living with HIV frequently show high plasma levels of fibroblast growth factor-2 (FGF-2/bFGF). FGF-2 accelerates the progression of several experimental kidney diseases; however, the role of circulating FGF-2 in childhood HIV-chronic kidney diseases (HIV-CKDs) is unknown. We carried out this study to determine whether high plasma FGF-2 levels were associated with the development of HIV-CKDs in children. The plasma and urine FGF-2 levels were measured in 84 children (< 12 years of age) living with HIV during the pre-modern antiretroviral era, and followed for at least 3 years to determine the prevalence of proteinuria and HIV-CKDs. We also assessed the distribution of the kidney FGF-2 binding sites by autoradiography and Alcian blue staining, and explored potential mechanisms by which circulating FGF-2 may precipitate HIV-CKDs in cultured kidney epithelial and mononuclear cells derived from children with HIV-CKDs. High plasma FGF-2 levels were associated with a high viral load. Thirteen children (~ 15%) developed HIV-CKDs and showed a large reservoir of FGF-2 low-affinity binding sites in the kidney, which can facilitate the recruitment of circulating FGF-2. Children with high plasma and urine FGF-2 levels had 73-fold increased odds (95% CI 9-791) of having HIV-CKDs relative to those with normal FGF-2 values. FGF-2 induced the proliferation and decreased the expression of APOL-1 mRNA in podocytes, and increased the attachment and survival of infected m