Fischer Sherwood (jellyjudge05)
To demonstrate the application of the proposed protocol, we have applied this approach to rare-variant datasets of schizophrenia. Compared with a method which only uses variant information, DECO is able to prioritize additional risk genes. DECO can be used to analyze rare-variants and biological pathways or cell types for any disease. The package is available on Github https//github.com/hoangtn/DECO. DECO can be used to analyze rare-variants and biological pathways or cell types for any disease. The package is available on Github https//github.com/hoangtn/DECO.A pentanucleotide TTTCA repeat insertion into a polymorphic TTTTA repeat element in SAMD12 causes benign adult familial myoclonic epilepsy. Although the precise determination of the entire SAMD12 repeat sequence is important for molecular diagnosis and research, obtaining this sequence remains challenging when using conventional genomic/genetic methods, and even short-read and long-read next-generation sequencing technologies have been insufficient. Incomplete information regarding expanded repeat sequences may hamper our understanding of the pathogenic roles played by varying numbers of repeat units, genotype-phenotype correlations, and mutational mechanisms. Here, we report a new approach for the precise determination of the entire expanded repeat sequence and present a workflow designed to improve the diagnostic rates in various repeat expansion diseases. We examined 34 clinically diagnosed benign adult familial myoclonic epilepsy patients, from 29 families using repeat-primed PCR, Southern blot, and long-ved SAMD12-negative cases were investigated using whole-genome long-read sequencing, and infrequent, disease-associated, repeat expansions were identified in two cases. The strategic workflow resolved two questionable SAMD12-positive cases and two previously SAMD12-negative cases, increasing the diagnostic yield from 69% (20/29 families) to 83% (24/29 families). This study indicates the significant utility of long-read sequencing technologies to explore the pathogenic contributions made by various repeat units in complex repeat expansions and to improve the overall diagnostic rate.Polyhistidine peptides (PHPs), sequences comprising only histidine residues (>His8), are effective cell-penetrating peptides for plant cells. Using PHP-fusion proteins, we aimed to deliver proteins into cultured plant cells from Nicotiana tabacum, Oryza sativa, and Cryptomeria japonica. Co-cultivation of cultured cells with fusion proteins combining maltose-binding protein (MBP), red fluorescent protein (RFP), and various PHPs (MBP-RFP-His8-His20) in one polypeptide showed the cellular uptake of fusion proteins in all plant cell lines. Maximum intracellular fluorescence was shown in MBP-RFP-His20. Further, adenylate cyclase (CyaA), a synthase of cyclic adenosine monophosphate (cAMP) activated by cytosolic calmodulin, was used as a reporter for protein delivery in living cells. A fusion protein combining MBP, RFP, CyaA, and His20 (MBP-RFP-CyaA-His20) was delivered into plant cells and increased intracellular fluorescence and cAMP production in all cell lines. The present study demonstrates that PHPs are effective carriers of proteins into the intracellular space of various cultured plant cells.The Deepwater Horizon oil spill response and clean-up (OSRC) involved over 9000 large and small vessels deployed in waters of the Gulf of Mexico across four states (Alabama, Florida, Louisiana, and Mississippi). For the GuLF STUDY, we developed exposure estimates of oil-related components for many work groups to capture a wide range of OSRC operations on these vessels, such as supporting the four rig vessels charged with stopping the spill at the wellhead; skimming oil; in situ burning of oil; absorbing and containing oil by boom; and environmental monitoring. Work groups were developed by (i) vessel activity; (ii) location (area of the Gulf or state); and (iii) time period. Using