Lauritsen Mangum (jarpoppy3)
Analysis of particulate matter (PM) is important for the assessment of human exposures to potentially harmful agents, notably combustion-generated PM. Specifically, polycyclic aromatic hydrocarbons (PAHs) found in ultrafine PM have been linked to cardiovascular diseases and carcinogenic and mutagenic effects. In this study, we quantify the presence and concentrations of PAHs with lower molecular weight (LMW, 126 less then MW less then 202) and higher molecular weight (HMW, 226 less then MW less then 302), i.e., smaller and larger than Pyrene, in combustion-generated PM using excitation-emission matrix (EEM) fluorescence spectroscopy. Laboratory combustion PM samples were generated in a laminar diffusion inverted gravity flame reactor (IGFR) operated on ethylene and ethane. Fuel dilution by Ar in 0% to 90% range controlled the flame temperature. HOIPIN-8 purchase The colder flames result in lower PM yields however, the PM PAH content increases significantly. Temperature thresholds for PM transition from low to high organic carbon content were characterized based on the maximum flame temperature (Tmax,c ∼ 1791 to 1857 K) and the highest soot luminosity region temperature (T*c ∼ 1600 to 1650K). Principal component regression (PCR) analysis of the EEM spectra of IGFR samples correlates to GCMS data with R2 = 0.988 for LMW and 0.998 for HMW PAHs. PCR-EEM analysis trained on the IGFR samples was applied to PM samples from woodsmoke and diesel exhaust, the model accurately predicts HMW PAH concentrations with R2 = 0.976 and overestimates LMW PAHs.We report a new method for the synthesis of acylphosphine oxides by the direct coupling of hydrogen phosphine oxides and acyl chlorides mediated by chlorosilanes. This new protocol is greener and safer, because it precludes the generation of volatile haloalkanes and the use of oxidants employed in the conventional methods. Moreover, moisture-unstable acylphosphine oxides that are difficult to prepare via the conventional methods can be generated using this new method.Braiding is a common skill in daily life but rare at the nanoscale. Most of the current nanohelices are directly grown or assembled without involving mechanical interactions, and they are thus distinctively different from ropes in terms of functions and mechanisms. Here, by coaxially twisting multiple ultrathin Au nanowires, nanoropes are synthesized with elegant helical patterns that are consistent with the macroscopic equivalents. The strain relaxation of lattice transformation causes the nanowires to pursue the maximum degree of twisting, while the mutual packing interactions in a bundle prevent sideways emergence of U-turns. The consistent chirality of the seemingly independent strands can only arise when a first twisting strand causes morphological deformation in its neighbors, which induces the collective uni-directional twisting. The spontaneous braiding and the "remote" control of the nanowires involve mechanical interactions and possibly energy transmission, thus opening doors to chiral assembly and future smart nanodevices.An efficient copper(II)-promoted denitrative trifluoromethylthiolation under mild reaction conditions has been developed for vinyl trifluoromethyl thioethers to construct Cvinyl-SCF3 bonds with stable AgSCF3 as a source of the trifluoromethylthio. This reaction system tolerates a broad range of functional groups to commendably achieve a high product yield and excellent stereoselectivity of E/Z.On-demand delivery of substances has been demonstrated for various applications in the fields of chemistry and biomedical engineering. Single-pulse release profile has been shown previously for micro/nanoparticles in different form factors. However, to obtain a sustained release, a pulsatile release profile is needed. Here, we demonstrate such a release profile from polymer magnetic nanocomposite microspheres loaded with chemicals. By exciting the microactuators with AC magnetic fields, we could achieve up