Iversen Reid (insecteast03)
The kinetics of the photolysis reaction follows first-order kinetics (k = 0.1/h). After thiolphenol (C6H5SH) ligand functionalization of the generated silver clusters in aqueous solution, the low or high resolution mass spectra showed the constant species composites with a molecular formula AgnLn-1 (n = 2-9 and L = C6H5S). More evidence indicated the formation of polymer-wrapped silver clusters. Their antibio property was explored, and we confirmed that they indeed show efficient activity.Excitons play major roles in optical processes in modern semiconductors, such as single-wall carbon nanotubes (CNTs), transition metal dichalcogenides, and 2D perovskite quantum wells. They possess extremely large binding energies (>100 meV), dominating absorption and emission spectra even at high temperatures. The large binding energies imply that they are stable, that is, hard to ionize, rendering them seemingly unsuited for optoelectronic devices that require mobile charge carriers, especially terahertz emitters and solar cells. Here, we have conducted terahertz emission and photocurrent studies on films of aligned single-chirality semiconducting CNTs and find that excitons autoionize, i.e., spontaneously dissociate into electrons and holes. This process naturally occurs ultrafast ( less then 1 ps) while conserving energy and momentum. The created carriers can then be accelerated to emit a burst of terahertz radiation when a dc bias is applied, with promising efficiency in comparison to standard GaAs-based emitters. Furthermore, at high bias, the accelerated carriers acquire high enough kinetic energy to create secondary excitons through impact exciton generation, again in a fully energy and momentum conserving fashion. This exciton multiplication process leads to a nonlinear photocurrent increase as a function of bias. Our theoretical simulations based on nonequilibrium Boltzmann transport equations, taking into account all possible scattering pathways and a realistic band structure, reproduce all of our experimental data semiquantitatively. These results not only elucidate the momentum-dependent ultrafast dynamics of excitons and carriers in CNTs but also suggest promising routes toward terahertz excitonics despite the orders-of-magnitude mismatch between the exciton binding energies and the terahertz photon energies.Separate focus on the oligomerization and oxidative cyclization steps required for the synthesis of 5,10,15-tris(trifluoromethyl)corrole revealed [bis(trifluoroacetoxy)iodo]benzene (PIFA) as a superior alternative oxidant. Under optimized conditions, the pure free-base corrole was obtained with a 6-fold increase in chemical yield and an 11-fold rise in isolated material per synthesis. The corresponding gallium(III) and manganese(III) complexes were isolated by adding the appropriate metal salt prior to corrole purification.The employment of ionizing radiation is a powerful tool in cancer therapy, but beyond targeted effects, many studies have highlighted the relevance of its off-target consequences. An exhaustive understanding of the mechanisms underlying these effects is still missing, and no real-time data about signals released by cells during irradiation are presently available. We employed a synchrotron X-ray nanobeam to perform the first real-time simultaneous measurement of both X-ray irradiation and in vitro neurotransmitter release from individual adrenal phaeochromocytoma (PC12) cells plated over a diamond-based multielectrode array. We have demonstrated that, in specific conditions, X-rays can alter cell activity by promoting dopamine exocytosis, and such an effect is potentially very attractive for a more effective treatment of tumors.A method for the preparation of 5-aminobutenolides from 2-bromo-2H-azirine-2-carboxylic esters/amides with arylacetic acids has been developed. The reaction regioselectivity can be switched by a change of the basic catalyst, making it possible to prepare both butenolide-based α