Burnett MacPherson (inputsteam14)

For intermediate electrostatic couplings, Coulomb attraction between opposite charges promotes absorption of ions into dendrimers' pervaded volume and counterion condensation on charged monomers. As a result, counterion density inside dendrimers abruptly increases and the ionic size starts to play a crucial role. In this regime, we observe that swelling of dendrimers reaches its maximum and is more pronounced for bulky counterions. For strong electrostatic couplings, complete condensation of conventional counterions proceeds, whereas for bulky ions condensation remains partial. In this regime, dendrimers deswell. In particular, in the presence of conventional ions, dendrimers collapse into globules, while, for bulky counterions, deswelling is suppressed.Data on thermally stimulated depolarization current (TSDC) study of the same poled glass in the temperature range 100-1000 K are analyzed. Four specific temperature ranges in the TSDC spectrum of this glass are identified, with each range being attributed to the charge relaxation processes of different natures. During linear heating in the temperature range 100-250 K, charge relaxation is related to the adsorption/desorption of particles from the atmosphere, supposedly water cluster ions H+(H2O) n . The next TSDC band, which is observed at room temperature and above, is related to the disordering of the polar structural entities. The TSDC band in the temperature range 500-750 K is attributed to the relaxation of spatial charge by the diffusion mechanism. The TSDC band in the temperature range 750-1000 K is attributed to the relaxation of spatial charge by the viscous flow mechanism. MGD-28 All these data allowed drawing a schematic TSDC spectrum of silicate glasses in the full temperature range.Combining two ionic liquids to form a binary ionic liquid mixture is a simple yet effective strategy to not only expand the number of ionic liquids but also precisely control various physicochemical properties of resultant ionic liquid mixtures. From a fundamental thermodynamic point of view, it is not entirely clear whether such mixtures can be classified as ideal solutions. Given a large number of binary ionic liquid mixtures that emerge, the ability to predict the presence of nonideality in such mixtures a priori without the need for experimentation or molecular simulation-based calculations is immensely valuable for their rational design. In this research report, we demonstrate that the difference in the molar volumes (ΔV) of the pure ionic liquids and the difference in the hydrogen-bonding ability of anions (Δβ) are the primary determinants of nonideal behavior of binary ionic liquid mixtures containing a common cation and two anions. Our conclusion is derived from a comparison of microscopic structural ntiated from those of their pure ionic liquid counterparts.Plasma membranes (PMs) contain hundreds of different lipid species that contribute differently to overall bilayer properties. By modulation of these properties, membrane protein function can be affected. Furthermore, inhomogeneous lipid mixing and domains of lipid enrichment/depletion can sort proteins and provide optimal local environments. Recent coarse-grained (CG) Martini molecular dynamics efforts have provided glimpses into lipid organization of different PMs an "Average" and a "Brain" PM. Their high complexity and large size require long simulations (∼80 μs) for proper sampling. Thus, these simulations are computationally taxing. This level of complexity is beyond the possibilities of all-atom simulations, raising the question-what complexity is needed for "realistic" bilayer properties? We constructed CG Martini PM models of varying complexity (63 down to 8 different lipids). Lipid tail saturations and headgroup combinations were kept as consistent as possible for the "tissues'" (Average/Brain) at three levels of compositional complexity. For each system, we analyzed membrane properties to evaluate which features