Myrick Bradford (ideacrab31)

Coronavirus disease 2019 (COVID-19) has exposed health care disparities in minority groups including Hispanics/Latinxs (HL). Studies of COVID-19 risk factors for HL have relied on county-level data. We investigated COVID-19 risk factors in HL using individual-level, electronic health records in a Los Angeles health system between March 9, 2020, and August 31, 2020. Of 9,287 HL tested for SARS-CoV-2, 562 were positive. HL constituted an increasing percentage of all COVID-19 positive individuals as disease severity escalated. Multiple risk factors identified in Non-Hispanic/Latinx whites (NHL-W), like renal disease, also conveyed risk in HL. Pre-existing nonrheumatic mitral valve disorder was a risk factor for HL hospitalization but not for NHL-W COVID-19 or HL influenza hospitalization, suggesting it may be a specific HL COVID-19 risk. Admission laboratory values also suggested that HL presented with a greater inflammatory response. COVID-19 risk factors for HL can help guide equitable government policies and identify at-risk populations.Dysregulated immune cell responses have been linked to the severity of coronavirus disease 2019 (COVID-19), but the specific viral factors of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were currently unknown. Herein, we reveal that the Immunoglobulin-like fold ectodomain of the viral protein SARS-CoV-2 ORF7a interacts with high efficiency to CD14+ monocytes in human peripheral blood, compared to pathogenic protein SARS-CoV ORF7a. The crystal structure of SARS-CoV-2 ORF7a at 2.2 Å resolution reveals three remarkable changes on the amphipathic side of the four-stranded β-sheet, implying a potential functional interface of the viral protein. Importantly, SARS-CoV-2 ORF7a coincubation with CD14+ monocytes ex vivo triggered a decrease in HLA-DR/DP/DQ expression levels and upregulated significant production of proinflammatory cytokines, including IL-6, IL-1β, IL-8, and TNF-α. Our work demonstrates that SARS-CoV-2 ORF7a is an immunomodulating factor for immune cell binding and triggers dramatic inflammatory responses, providing promising therapeutic drug targets for pandemic COVID-19.There is a need to assess evolutionary outcomes for SARS-CoV-2 in the postvaccination phase. The role of virus glycosylation in deterring the development of vaccine resistance is weighed against the epitopes of extant vaccines and the modulation of induced immune surveillance on antigens containing glycosylation sites.Levodopa is a prodrug that is converted into dopamine, which replenishes the deficient dopamine in the brain of patients suffering from Parkinsonism. We hypothesize that levodopa may interact with the receptor binding domain of the SARS-CoV-2 and may act as a physical impediment to the viral entry into the host cell.This piece addresses the urge to assess the evolutionary fate of SARS-CoV-2 in a post-vaccination phase. The possibilities of COVID-19 becoming endemic or extinct are weighed against verifiable properties of extant vaccines and observed genetic trends already apparent under the mild selection pressure exerted almost exclusively by social rules.Currently, COVID-19 has created difficulties in understanding the pathological mechanisms and therapeutic options for treatment. COVID-19 patients have shown to be hypoxic, and hypoxia causes alteration of the cell calcium dynamics, which leads to alterations in many signal transduction pathways and gene expression. Also, both viruses and hypoxia directly alter many pathological and biochemical pathways, such as inflammation, cytokine signaling, glycolysis, and calcium signaling. Therefore, understanding of these cellular events would be useful in finding therapeutic options.Cancer patients contracting SARS-CoV-2 encounter additional challenges due to inflammatory bursts and lymphopenia, which may aggravate breast cancer prognosis. In this in silico analysis, we identified the potential of miRNAs as new therapeutic targets to treat breas