Adair Mattingly (hosebra0)

To validate a candidate instrument, to be used by different professionals to assess image quality in digital mammography (DM), against detection performance results. A receiver operating characteristics (ROC) study was conducted to assess the detection performance in DM images with four different image quality levels due to different quality issues. Fourteen expert breast radiologists from five countries assessed a set of 80 DM cases, containing 60 lesions (40 cancers, 20 benign findings) and 20 normal cases. A visual grading analysis (VGA) study using a previously-described candidate instrument was conducted to evaluate a subset of 25 of the images used in the ROC study. Eight radiologists that had participated in the ROC study, and seven expert breast-imaging physicists, evaluated this subset. The VGA score (VGAS) and the ROC and visual grading characteristics (VGC) areas under the curve (AUC and AUC ) were compared. No large differences in image quality among the four levels were detected by either ROC or VGA studies. However, the ranking of the four levels was consistent level 1 (partial AUC 0.070, VGAS 6.77) performed better than levels 2 (0.066, 6.15), 3 (0.061, 5.82), and 4 (0.062, 5.37). Similarity between radiologists' and physicists' assessments was found (average VGAS difference of 10 %). The results from the candidate instrument were found to correlate with those from ROC analysis, when used by either observer group. Therefore, it may be used by different professionals, such as radiologists, radiographers, and physicists, to assess clinically-relevant image quality variations in DM. The results from the candidate instrument were found to correlate with those from ROC analysis, when used by either observer group. Therefore, it may be used by different professionals, such as radiologists, radiographers, and physicists, to assess clinically-relevant image quality variations in DM.The advance of porphyrins as artificial nucleases along the years have developed a class of compounds having potential therapeutic applications. Being an extrovert of chemistry, a variety of chemical modifications have been done on porphyrin macrocycle in order to improve the spectroscopic properties and to adapt as artificial receptors that can recognize molecules. The last twenty years has witnessed broad research in the arena of porphyrin- DNA interactions and their evolution from simple to more complex entities. In this review, we summarize the recent advances in the porphyrin-based structural modifications, with a specific emphasis on various effects of porphyrin on DNA cleavage potency. We particularly detailed the nuclease activity of cationic and anionic porphyrins, porphyrin dimers and conjugates as well as heme proteins till the third generation porphyrins as artificial nucleases.The complexes [(η6-bz)Ru(bpm)Cl]PF6, (1)PF6, [(η6-bz)ClRu(μ-bpm)PtCl2]PF6, (2)PF6, [(η6-cym)ClRu(μ-bpm)PtCl2]PF6, (3)PF6, [(η6-cym)ClRu(μ-bpm)PdCl2]PF6, (4)PF6, [Pt(bpm)(cbdca)], (5) and [(η6-cym)ClRu(μ-bpm)Pt(cbdca)]PF6, (6)PF6, (bz = benzene, bpm = 2,2'-bipyrimidine, cym = p-cymene, cbdcaH2 = 1,1-cyclobutanedicarboxylic acid),were synthesized and characterized by means of 1H NMR and high-resolution ESI mass spectrometry. The complexes were transformed to the corresponding chloride salts to become soluble in aqueous media, and to be studied regarding their biological properties. However, while the heterobimetallic complexes (3)Cl and (6)Cl were almost stable, (2)Cl and (4)Cl were decomposed. The interaction of 9-MeG (9-MeG = 9-methylguanine) with (3)Cl and (6)Cl revealed that it coordinates only to the platinum center through N7. Decomposition of the heterobimetallic complexes takes place after the coordination of 9-MeG, mainly forming the complex [Pt(bpm)(9-MeG-N7)Cl]+. Notably, the cytotoxic activity of (6)Cl in cancer cells was found to be moderate when compared to cisplatin, but higher in com