Peacock Boye (heronglove19)

Only half of the people with SARS-CoV-2 infection developed symptoms. Chronic obstructive pulmonary disease and neurological syndrome were correlated with an increased risk of developing SARS-CoV-2 related symptoms. Fifty-six (21.2%) people with SARS-CoV-2 infection died; of these, 53 died in the first 30 days after the swab's positivity. Significant factors associated with 30-days mortality were male gender, hypokinetic disease, and the presence of fever and dyspnea. Patients' autonomy and early heparin treatment were related to lower mortality risk. We evidenced factors associated with infection's risk and death in a setting with high mortality such as retirement nursing homes, that should be carefully considered in the management of PLRNH. We evidenced factors associated with infection's risk and death in a setting with high mortality such as retirement nursing homes, that should be carefully considered in the management of PLRNH.Chromosomes are giant chain molecules organized into an ensemble of three-dimensional structures characterized with its genomic state and the corresponding biological functions. Despite the strong cell-to-cell heterogeneity, the cell-type specific pattern demonstrated in high-throughput chromosome conformation capture (Hi-C) data hints at a valuable link between structure and function, which makes inference of chromatin domains (CDs) from the pattern of Hi-C a central problem in genome research. Here we present a unified method for analyzing Hi-C data to determine spatial organization of CDs over multiple genomic scales. By applying statistical physics-based clustering analysis to a polymer physics model of the chromosome, our method identifies the CDs that best represent the global pattern of correlation manifested in Hi-C. The multi-scale intra-chromosomal structures compared across different cell types uncover the principles underlying the multi-scale organization of chromatin chain (i) Sub-TADs, TADs, and meta-TADs constitute a robust hierarchical structure. (ii) The assemblies of compartments and TAD-based domains are governed by different organizational principles. (iii) Sub-TADs are the common building blocks of chromosome architecture. Our physically principled interpretation and analysis of Hi-C not only offer an accurate and quantitative view of multi-scale chromatin organization but also help decipher its connections with genome function.With the rapid advances of various single-cell technologies, an increasing number of single-cell datasets are being generated, and the computational tools for aligning the datasets which make subsequent integration or meta-analysis possible have become critical. Typically, single-cell datasets from different technologies cannot be directly combined or concatenated, due to the innate difference in the data, such as the number of measured parameters and the distributions. Even datasets generated by the same technology are often affected by the batch effect. A computational approach for aligning different datasets and hence identifying related clusters will be useful for data integration and interpretation in large scale single-cell experiments. Our proposed algorithm called JSOM, a variation of the Self-organizing map, aligns two related datasets that contain similar clusters, by constructing two maps-low-dimensional discretized representation of datasets-that jointly evolve according to both datasets. Here we applied the JSOM algorithm to flow cytometry, mass cytometry, and single-cell RNA sequencing datasets. The resulting JSOM maps not only align the related clusters in the two datasets but also preserve the topology of the datasets so that the maps could be used for further analysis, such as clustering.In the last twenty years there has been an increase in the proportion of women practicing the medical profession which has occurred in parallel with the increase in participation of women in the scientific professions. Italy has a stab