Rich Skipper (heaventrial8)
The proposed integrative methodology can be applied to any longitudinal cohort and disease of interest. In this paper, prostate cancer is selected as a use case of medical interest to demonstrate, for the first time, the identification of temporal disease multimorbidities in different disease spaces. https//gitlab.com/agiannoula/diseasetrajectories. Supplementary data are available at Bioinformatics online. Supplementary data are available at Bioinformatics online.A simple and practical method to access N-substituted 2-pyridones via a formal [3+3] annulation of enaminones with acrylates based on RhIII-catalyzed C-H functionalization was developed. Control and deuterated experiments led to a plausible mechanism involving C-H bond cross-coupling and aminolysis cyclization. This strategy provides a short synthesis of structural motifs of N-substituted 2-pyridones.Plasma CO2 splitting to CO over oxygen-deficient Mo-doped CeO2 under mild conditions was investigated for the first time, showing ∼20 times higher CO2 conversion compared to pure CeO2, which can be attributed to the increased oxygen vacancies (VO) and the formation of Ce3+-VO-Mo on the catalyst surface. Importantly, VO sites showed excellent catalytic stability.Here we discovered an unprecedented giant octahedral coordination compound bearing 16 Zn2+, 12 Na+, 8 O2-, 4 OH-, 13 H2O and 6 L4- ligands [L4- = fully deprotonated tetra(carboxymethoxy)calix[4]arene]. Its structure was elucidated by single-crystal X-ray diffraction, wavelength-dispersive X-ray spectroscopy and MALDI-TOF mass spectrometry. This compound, Zn8Na6L6⊃Zn8Na6O8(OH)4(H2O)13 (external⊃internal), has eight tetrahedral zinc ions forming the coordination vertices of an outermost cube where carboxylate groups from the sodium calixarenes are anchored. Its core consists of eight Zn2+, six Na+, eight O2-, and four OH- distributed over three layers, besides thirteen coordinated H2O molecules.Our ability to synthesize faceted nanoparticles of tunable shapes and sizes has opened up many intriguing applications of such particles. However, our progress in understanding, modeling, and simulating their collective rheology, phase behavior, and self-assembly has been hindered by the lack of analytical interparticle interaction potentials. Here, we present one of the first analytical models for the van der Waals interaction energy between faceted nanoparticles. The model was derived through various approximations that reduce the usual six-dimensional integral over particle volumes to a series of two-dimensional integrals over particle interaction areas with closed-form solutions. Comparison and analyses of energies obtained from the analytical model with those computed from exact atomistic calculations show that the model approximations lead to insignificant errors in predicted energies across all relevant particle configurations. We demonstrate that the model yields accurate energies for diverse particle shapes including nanocubes, triangular prisms, faceted rods, and square pyramids, while yielding many orders of magnitude improvement in computational efficiency compared to atomistic calculations. To make the model more accessible and to demonstrate its applicability, an open-source graphical user interface application implementing the model for nanocubes in arbitrary configurations has been developed. We expect that the analytical model will accelerate future investigations of faceted nanoparticles that require accurate calculation of interparticle interactions.State of the art supercapatteries have received considerable attention for their significant electrochemical performance; however, electrode materials with enhanced charge storage capabilities are desired. Here, we report the synthesis of mixed metal phosphate nanomaterials with different concentrations via a sonochemical approach. click here Initially, binary metal phosphates based on zinc, cobalt, and manganese were synthesized