Fallon Dunlap (headact19)
The virion host shutoff (VHS) protein, encoded by the UL41 gene of herpes simplex virus (HSV), specifically degrades mRNA and induces host shutoff. VHS and its homologs are highly conserved in the Alphaherpesvirinae subfamily. However, the role of the duck plague virus (DPV) UL41 gene is unclear. In this study, we found that the DPV UL41 gene-encoded protein (pUL41) degrades RNA polymerase (pol) II-transcribed translatable RNA and induces protein synthesis shutoff. DPV pUL41 was dispensable for viral replication, but the UL41-deleted mutant virus exhibited a significant viral growth defect and plaque size reduction in Duck embryo fibroblast (DEF) cells. selleck chemical Furthermore, DPV pUL41 regulated viral mRNA accumulation to affect viral DNA replication, release and cell-to-cell spread.Boron is an essential plant micronutrient responsible for several important functions. Boron availability in soils may be influenced by binding with soil organic matter (SOM), particularly with aromatic diol and polyphenol groups on SOM. The mechanism by which aromatic diols bind boron, however, remains unclear. The objective of this work is to further investigate interaction between boric acid and varying concentrations of an aromatic, polyphenolic SOM analogue (tannic acid at 5, 10 and 20 g L-1) from pH = 5-9. UV/Visible spectroscopy showed boric acid enhanced tannic acid deprotonation at pH = 7.0 and 9.0, resulting in singly deprotonated tannic acid subunits. Attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) showed boric acid/tannic acid binding for all concentrations at pH = 7 and 9, whereas binding at pH = 5.0 was observed only at 20 g L-1 tannic acid. Uncomplexed boron species were not evident at pH = 9.0, but were detectable at pH = 7.0 at lower tannic acid concentrations and prevalent at pH = 5.0, qualitatively indicating binding affinity increases from pH = 5.0 to 9.0. ATR-FTIR results indicated tetrahedral coordination of boron upon complexation to tannic acid with a monodentate mechanism. These results collectively highlight a transition of solution planar boric acid to a tetrahedral, monodentate coordination with a single phenol group in tannic acid polyphenols. This contrasts with previous spectroscopic studies, which indicated bidentate tetrahedral or monodentate trigonal planar orientations prevail at aromatic diol sites. This work presents a previously unobserved boric acid coordination mechanism to an SOM analogue and, therefore, may better inform prediction and modeling of boron behavior in soils.Kaolinite and methoxy-modified kaolinite were used as novel adsorbents for oxytetracycline (OTC) removal and recovery from aqueous media. Batch adsorption experiments were performed to study the effect of pH, ionic strengths, initial concentration, and contact time on OTC adsorption. The adsorbents were characterized using powder X-ray diffraction (PXRD), Fourier-transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) before and after adsorption. Adsorption of OTC reached its maximum when solution pH increased up to 6 for 0.001 M ionic strength, above which adsorption decreased further when solution pH increased. Freundlich and Langmuir's models best fit the equilibrium data with a strong dependency on OTC adsorption capacity giving its maximum at 36 mg g-1. Binding is postulated for OTC adsorption on pristine kaolinite as a special case of Hill model with independent binding interaction of OTC adsorption onto the clay that affects the adjacent sites on the pristine kaolinite, in contrast with the adsorption of OTC on methoxy-modified kaolinite. Nitrogen peaks of the XPS spectra indicated changes in the oxidation states of C-N bonds in the N1s peaks by forming tertiary amide C-N and methoxy O-CH3 bonds which corroborated with the results from FTIR spectra. Removal efficiencies and spectroscopic results indicate that performance on methoxy-modified kaolinite is a promising