Hyldgaard Risager (hailchef52)

Bismuth (Bi)-doped materials are capable of exhibiting broadband near-infrared (NIR) luminescence in 1,000-1,700 nm; driven by the potential use in lasers and broadband optical amplifiers for modern fiber communication systems, Bi-activated NIR luminescencent glasses and related devices have attracted much attention. Compared with glass systems, Bi-doped crystals as gain media usually have more regular crystal structures to produce stronger NIR signals, and developing such materials is highly desirable. Regarding the recent advances in Bi-doped NIR crystals, here, for the first time, we summarized such crystals listed as two main categories of halogen and oxide compounds. Then, by comparing the substitution site, coordination environment, emission and excitation luminescence peaks, emitting center species, and decay times of these known Bibased NIR crystals, discussion on how to design Bi-doped NIR crystals is included. Finally, the key challenges and perspectives of Bi-doped NIR crystals are also presented. It is hoped that this review could offer inspiration for the further development of Bi-doped NIR luminescent crystals and exploit its potential applications.Our rudimentary knowledge about rat intraspecific vocal system of information exchange is limited by experimental models of communication. Rats emit 50-kHz ultrasonic vocalizations in appetitive states and 22-kHz ones in aversive states. Both affective states influence heart rate. We propose a behavioral model employing exposure to pre-recorded playbacks in home-cage-like conditions. Brensocatib purchase Fifty-kHz playbacks elicited the most vocalizations (>60 calls per minute, mostly of 50-kHz type), increased heart rate, and locomotor activity. In contrast, 22-kHz playback led to abrupt decrease in heart rate and locomotor activity. Observed effects were more pronounced in singly housed rats compared with the paired housed group; they were stronger when evoked by natural playback than by corresponding artificial tones. Finally, we also observed correlations between the number of vocalizations, heart rate levels, and locomotor activity. The correlations were especially strong in response to 50-kHz playback.Lithium-sulfur batteries are paid much attention owing to their high specific capacity and energy density. However, their practical applications are impeded by poor electrochemical performance due to the dissolved polysulfides. The concentration of soluble polysulfides has a linear relationship with the internal heat generation. The issue of heat transport inside lithium-sulfur batteries is often overlooked. Here, we designed a functional separator that not only had a high thermal conductivity of 0.65 W m-1 K-1 but also alleviated the diffusion of dissolved active materials to the lithium anode, improving the electrochemical performance and safety issue. Lithium-sulfur batteries with the functional separator have a specific capacity of 1,126.4 mAh g-1 at 0.2 C, and the specific capacity can be remained up to 893.5 mAh g-1 after 100 cycles. Pouch Cells with high sulfur loading also showed a good electrochemical performance under a lean electrolyte condition of electrolyte/sulfur (E/S) = 3 μL mg-1.Accurately determining the age of hydrothermal ore deposits is difficult, because of lack of suitable mineral chronometers and techniques. Here we present the first LA-MC-ICPMS U-Pb age of carbonates from hydrothermal Sb deposits. Three stages of hydrothermal carbonates from the giant South China Sb metallogenic belt were identified (1) pre-ore dolomite (Dol-I), (2) syn-ore calcite (Cal-II), and (3) post-ore calcite (Cal-III). The U and Pb isotopic data show that Cal-II yielded a lower intercept age of 115.3 ± 1.5 Ma (MSWD = 2.0), suggesting a Sb mineralization that corresponds to an extension event occurred during the early Cretaceous in South China. Although Cal-III yielded an age of 60.0 ± 0.9 Ma (MSWD = 1.5), indicating a potential tectonothermal event occurred in