Herskind Myers (gunpest8)

The results showed that DeepResolution has superior compound identification capability and better quantitative performances when comparing with MS-DIAL, ADAP-GC and AMDIS. It was also found that baseline levels, interferents, component concentrations and peak tailing have little influences on resolution result. Besides, DeepResolution can be extended easily when encountering unknown component(s), due to the independence of each CNN model. All procedures of DeepResolution can be performed automatically, and adaptive selection of resolution methods ensures the balance between resolution power and consumed time. It is implemented in Python and available at https//github.com/XiaqiongFan/DeepResolution.A simple and practical magnetic solid-phase extraction high-performance liquid chromatography-inductively coupled plasma mass spectrometry (MSPE-HPLC-ICP-MS) method for extraction and determination of trace mercury species, including inorganic mercury (IHg), monomethylmercury (MeHg) and ethylmercury (EtHg), was developed. The MSPE adsorbent, urchin-like thiol and thioether-functionalized magnetic covalent organic frameworks (Fe3O4@COF-S-SH), was synthesized by coating covalent organic frameworks (COFs) on the surface of Fe3O4 nanoparticles at room temperature and then easily grafting 1,2-Ethanedithiol on the COFs. The as-prepared Fe3O4@COF-S-SH has strong adsorption capacity for IHg, MeHg and EtHg, with excellent static adsorption capacity 571, 559 and 564 mg g-1, respectively. The parameters influencing the extraction and enrichment had been optimized, including pH, adsorption and desorption time, composition and amount of the eluent, co-existing ions and dissolved organic materials etc. Under the optimized condition, the limit of detection (3δ) of the proposed method were 0.96, 0.17 and 0.47 ng L-1 for IHg, MeHg and EtHg, and the developed method has high actual enrichment factors of 370, 395, 365-fold for IHg, MeHg and EtHg based on 200 mL samples, respectively. The high accuracy and reproducibility has been proved by the spiked recoveries (96.0‒108 %) in real water samples and determination of the certified reference material. Both the adsorption and desorption process can be completed within 5 min. The proposed method with simple operation, short pre-concentration time and high sensitivity has been successfully applied to mercury speciation at trace levels in the samples with complicated matrices, including underground water, surface water, sea water and fish samples.A hexafluroisopropanol (HFIP)-alkanol supramolecular solvent (SUPRAS) based magnetic solvent bar (MSB) liquid-phase microextraction (LPME) method was proposed for extraction of non-steroidal anti-inflammatory drugs (NSAIDs, including ketoprofen, naproxen, indomethacin and diclofenac) in human serum. The restricted access HFIP-alkanol SUPRAS was prepared by injecting a mixture of HFIP and alkanol into water. A stainless-steel needle was inserted into a piece of hollow fiber to prepare a magnetic bar. Then the magnetic bar was dipped in SUPRAS to impregnate the wall pores of the hollow fiber, followed by placing it into the serum sample for extraction. Only 4 μL of SUPRAS was consumed per bar. The MSB not only functioned for stirring, but also played the role of extraction and magnetic separation. Under the optimal extraction conditions (seven MSBs, extraction time 33 min and stirring rate 730 rpm), which was obtained by one variable-at-a-time and response surface methodology, the novel MSB-LPME was coupled with high performance liquid chromatography-tandem mass spectrometry to determine NSAIDs in human serum. The method showed a good linear relationship (correlation coefficients ≥ 0.9939). BMS-986235 manufacturer Method limits of detection and method limits of quantitation were in the range of 0.25-0.95 μg L-1 and 0.83-3.16 μg L-1, respectively. The recoveries for the spiked human serum samples ranged from 86.8% to 125.1% with intra- and inter-day relative standa