Martens Mark (goldease20)
nd during travel to rural areas are essential. Malaria infection is prevalent in the study area and was greatly influenced by traveling activities from the rural areas to urban centers and vice versa. Multifaceted and integrated control strategy should be adopted. Health education on mosquito prevention and chemoprophylaxis before and during travel to rural areas are essential.Genotype by environment interaction (GxE) complicates the process of selecting genotypes suitable for quantitative traits like seed yield in beans, hence slows down the development and release of varieties by breeding programs. GxE study on seed yield in beans enables identification of stable genotypes across sites and best site(s) for discriminating the tested genotypes in terms of seed yield. The purpose of this study was to evaluate the influence of the environment, genotype, and genotype by environment interaction on seed yield stability and adaptability of common bean landraces, lines, and improved varieties across three different agro-ecologies in Tanzania. The 99 common bean genotypes (Landraces, lines, and improved varieties) were planted following alpha lattice design in three replications each contained five blocks with 20 plots. Soil properties from the experimental sites, days to 75% flowering, Seed yield, 100 seed weight, number of seeds/pod, and number of pods/plant were recorded. Data on seed yaled that E1 (TARI-Selian) was the most discriminative and representative site for common bean genotypes seed yield. Based on the yield stability index, the most stable and high seed yielding genotypes were ACC 714, Selian 14, Selian 9, Katuku, and Msolini. The identified high seed yielding and stable genotypes can be further tested in participatory variety selection involving farmers and later on released as varieties and can also be used for different breeding purposes in different agro-ecologies of Tanzania.In the present study, we depict the structural modification of test minerals, physiological response and ovarian damage in the tropical sea urchin Salmacis virgulata using microcosm CO2 (Carbon dioxide) perturbation experiment. S. virgulata were exposed to hypercapnic conditions with four different pH levels using CO2 gas bubbling method that reflects ambient level (pH 8.2) and elevated pCO2 scenarios (pH 8.0, 7.8 and 7.6). The variations in physical strength and mechanical properties of S. virgulata test were evaluated by thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction analysis and scanned electron microscopy analysis. Biomarker enzymes such as glutathione-S-transferase, catalase, acetylcholine esterase, lipid peroxidase and reduced glutathione showed physiological stress and highly significant (p less then 0.01) towards pH 7.6 and 7.8 treatments. BMS-502 ic50 Ovarian cells were highly damaged at pH 7.6 and 7.8 treatments. This study proved that the pH level 7.6 and 7.8 drastically affect calcification, physiological response and ovarian cells in S. virgulata.For the first time, we incorporated mesoporous micro-silica (5 μm, pore size = 50 nm) as a filler in epoxy resin aiming to enter polymer into the pore of the silica. As expected, the thermal stability of the composite increased remarkably, followed by noteworthy thermal degradation kinetics when compared to the controlled cured epoxy resin. Composites were prepared by the direct dispersion of modified nano-silica, modified mesoporous micro-silica, unmodified mesoporous micro-silica, non-porous micro-silica, and irregular micro-silica of various pore sizes as fillers in diglycidyl ether of bisphenol-A epoxy resin via ultra-sonication and shear mixing, followed by oven-curing with 4,4-diaminodiphenyl sulfone. DSC and TGA analyses demonstrated a higher glass transition temperature (increased by 3.65-5.75 °C) and very high activation energy for thermal degradation (average increase = 46.2%) was obtained for the same unmodified silica composite c