Godfrey Wells (ghostray5)
For example, potato is an important source of DIN in rivers of some upstream sub-basins. Our results may help to prioritize the dominant crop sources for management to mitigate N pollution in the future.Metal-organic frameworks (MOFs) have been explored as crystal sponges (CSs) to organic substrates, but attention had rarely been paid to inorganic substrates. Herein, hierarchical zirconium-based MOFs exhibiting different topological structures had been fabricated by modulating the functional groups of the V-shaped linkers, including a new 4-fold-interpenetrating one, which displays a great performance as a CS applicable to inorganic matter (I2 and ReO4-) even in the extreme conditions.There are few methods available for the rapid discovery of multitarget drugs. Herein, we describe the template-assisted, target-guided discovery of small molecules that recognize d(CTG) in the expanded d(CTG·CAG) sequence and its r(CUG) transcript that cause myotonic dystrophy type 1. A positive cross-selection was performed using a small library of 30 monomeric alkyne- and azide-containing ligands capable of producing >5000 possible di- and trimeric click products. The monomers were incubated with d(CTG)16 or r(CUG)16 under physiological conditions, and both sequences showed selectivity in the proximity-accelerated azide-alkyne [3+2] cycloaddition click reaction. The limited number of click products formed in both selections and the even smaller number of common products suggests that this method is a useful tool for the discovery of single-target and multitarget lead therapeutic agents.A method for the fast isolation, propagation, and characterization of very low count bacteriophages active against pathogenic bacterial strains is described in this study. Bacteriophages with a count of 102 phage particles were dynamically adhered from the maximum 10 mL blood plasma sample onto the nanostructured part of the fused silica capillary. One-step propagation of phage particles of genus Kayvirus inside the etched capillary on 104Staphylococcus aureus host cells increased their number to 6 × 104 phage particles. Phage particles were concentrated online and separated by capillary electrophoretic methods. No phage replication occurred when the phage-resistant S. aureus or Escherichia coli cells were used. Two-step phage propagation in the capillary allowed an increase in the total virion count to up to 6 × 105 phage particles and subsequent off-line matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of the phage zone collected after capillary electrophoresis. Relative standard deviations of the phage peak area were at most 2.3%. We expect that the method of isolating bacteriophages from blood plasma and their simultaneous identification will facilitate clinical studies of phage preparations and contribute to pharmacokinetics studies during phage therapy. This approach is also suitable for capturing and enriching new phages from the environment when a susceptible indicator strain is available.The spatial distributions of elemental and molecular species are vital pieces of information for a broad number of applications such as material development and bio/environmental analysis. There is currently no single analytical method that can simultaneously acquire elemental, molecular, and spatial information from a single sample. This paper presents the coupling of an NWR213 laser ablation (LA) system to the liquid sampling-atmospheric pressure glow discharge (LS-APGD) microplasma for combined atomic and molecular (CAM) analysis. The work demonstrates a fundamental balance that must be considered between the extent of fragmentation of molecules and ionization of atoms for CAM analysis. Detailed studies showed that the interelectrode gap to be a critical parameter for controlling the ionization efficiency of atomic and molecular species. Utilizing Design-of-Experiment (DoE) procedures, the discharge current was also found to b