Ivey May (gardencolon0)

A Correction to this paper has been published https//doi.org/10.1038/s41590-021-00932-2.A Correction to this paper has been published https//doi.org/10.1038/s41590-021-00929-x.Although the pathological significance of tumor-associated macrophage (TAM) heterogeneity is still poorly understood, TAM reprogramming is viewed as a promising anticancer therapy. Here we show that a distinct subset of TAMs (F4/80hiCD115hiC3aRhiCD88hi), endowed with high rates of heme catabolism by the stress-responsive enzyme heme oxygenase-1 (HO-1), plays a critical role in shaping a prometastatic tumor microenvironment favoring immunosuppression, angiogenesis and epithelial-to-mesenchymal transition. This population originates from F4/80+HO-1+ bone marrow (BM) precursors, accumulates in the blood of tumor bearers and preferentially localizes at the invasive margin through a mechanism dependent on the activation of Nrf2 and coordinated by the NF-κB1-CSF1R-C3aR axis. Inhibition of F4/80+HO-1+ TAM recruitment or myeloid-specific deletion of HO-1 blocks metastasis formation and improves anticancer immunotherapy. Relative expression of HO-1 in peripheral monocyte subsets, as well as in tumor lesions, discriminates survival among metastatic melanoma patients. Overall, these results identify a distinct cancer-induced HO-1+ myeloid subgroup as a new antimetastatic target and prognostic blood marker.Fibroblastic reticular cells (FRCs) are specialized stromal cells that define tissue architecture and regulate lymphocyte compartmentalization, homeostasis, and innate and adaptive immunity in secondary lymphoid organs (SLOs). In the present study, we used single-cell RNA sequencing (scRNA-seq) of human and mouse lymph nodes (LNs) to identify a subset of T cell-zone FRCs defined by the expression of Gremlin1 (Grem1) in both species. Grem1-CreERT2 knock-in mice enabled localization, multi-omics characterization and genetic depletion of Grem1+ FRCs. Grem1+ FRCs primarily localize at T-B cell junctions of SLOs, neighboring pre-dendritic cells and conventional dendritic cells (cDCs). As such, their depletion resulted in preferential loss and decreased homeostatic proliferation and survival of resident cDCs and compromised T cell immunity. Trajectory analysis of human LN scRNA-seq data revealed expression similarities to murine FRCs, with GREM1+ cells marking the endpoint of both trajectories. These findings illuminate a new Grem1+ fibroblastic niche in LNs that functions to maintain the homeostasis of lymphoid tissue-resident cDCs.We previously developed REXER (Replicon EXcision Enhanced Recombination); this method enables the replacement of >100 kb of the Escherichia coli genome with synthetic DNA in a single step and allows the rapid identification of non-viable or otherwise problematic sequences with nucleotide resolution. Iterative repetition of REXER (GENESIS, GENomE Stepwise Interchange Synthesis) enables stepwise replacement of longer contiguous sections of genomic DNA with synthetic DNA, and even the replacement of the entire E. coli genome with synthetic DNA. Here we detail protocols for REXER and GENESIS. A standard REXER protocol typically takes 7-10 days to complete. Our description encompasses (i) synthetic DNA design, (ii) assembly of synthetic DNA constructs, (iii) utilization of CRISPR-Cas9 coupled to lambda-red recombination and positive/negative selection to enable the high-fidelity replacement of genomic DNA with synthetic DNA (or insertion of synthetic DNA), (iv) evaluation of the success of the integration and replacement and (v) identification of non-tolerated synthetic DNA sequences with nucleotide resolution. This protocol provides a set of precise genome engineering methods to create custom synthetic E. coli genomes.The genome is hierarchically organized into several 3D architectures, including chromatin loops, domains, compartments and regions associated with nuclear lamina and nucleoli. Changes in these architectures have been associate