Matthews Rankin (frontcent21)
structure in shrimp cultural pond sediments.The second-generation (2G) fermentation environment for lignocellulose conversion presents unique challenges to the fermentative organism that do not necessarily exist in other industrial fermentations. While extreme osmotic, heat, and nutrient starvation stresses are observed in sugar- and starch-based fermentation environments, additional pre-treatment-derived inhibitor stress, potentially exacerbated by stresses such as pH and product tolerance, exist in the 2G environment. Furthermore, in a consolidated bioprocessing (CBP) context, the organism is also challenged to secrete enzymes that may themselves lead to unfolded protein response and other stresses. This review will discuss responses of the yeast Saccharomyces cerevisiae to 2G-specific stresses and stress modulation strategies that can be followed to improve yeasts for this application. We also explore published -omics data and discuss relevant rational engineering, reverse engineering, and adaptation strategies, with the view of identifying genes or alleles that will make positive contributions to the overall robustness of 2G industrial strains. KEYPOINTS • Stress tolerance is a key driver to successful application of yeast strains in biorefineries. • A wealth of data regarding stress responses has been gained through omics studies. • Integration of this knowledge could inform engineering of fit for purpose strains.RNA-based pesticides exert their function by suppressing the expression of an essential gene in the target pest through RNA interference caused by double-stranded RNA (dsRNA). Here, we selected target genes for growth suppression of the solanaceous crop pests ladybird beetle (Henosepilachna vigintioctopunctata) and Colorado potato beetle (Leptinotarsa decemlineata)-the death-associated inhibitor of apoptosis protein 1 gene (diap1), and an orthologous gene of the COPI coatomer protein complex (copI), respectively. We constructed a cost-competitive overproduction system for dsRNA using Corynebacterium glutamicum as a host bacterium. The dsRNA expression unit was equipped with two sets of promoters and terminators derived from coliphage T7, and the convergent expression system was designed to be selectively transcribed by T7 RNA polymerase. This expression system efficiently overproduced both target dsRNAs. On culture in a jar fermentor, the yield of diap1-targeting dsRNA (approximately 360 bp) was > 1 g per liter of culture. Long-chain diap1-targeting dsRNAs (up to around 1 kbp) could be produced without a substantial loss of efficiency. dsRNA accumulated in C. glutamicum significantly suppressed larval growth of H. vigintioctopunctata. The dsRNA expression technology developed here is expected to substantially reduce dsRNA production costs. Our method can be applied for a wide range of industrial uses, including agricultural pest control. KEY POINTS • Overexpression of dsRNA was achieved in C. glutamicum using a coliphage T7 system. • The best strain produced > 1 g/L of the target dsRNA species, for use as an insecticide. • The developed system efficiently produced long dsRNA species, up to ~ 1 kbp. To evaluate magnetic resonance imaging (MRI) criteria of solid renal lesions lower-equal to 2cm to differentiate benign and malignant tumors, using histopathology as gold standard. Three radiologists independently evaluated objective and subjective MRI criteria of focal renal lesions. A total of 105 nodules of patients who had MRI and histopathological results in our institution were included. Subjective criteria evaluated were signal on T2-weighted imaging, presence of microscopic and macroscopic fat, hemosiderin, hemorrhage, central scar, segmented inversion enhancement and enhancement type; objective criteria were gender, ADC value, heterogeneity on T2-weighted imaging and proportion of enhancement in late post-contrast phases. Finally, the readers classified the lesions in probably benign