Henningsen Mcintosh (fridgecheck3)
The use of antiplatelets is widespread in clinical practice. However, for neurointerventional procedures, protocols for antiplatelet use are scarce and practice varies between individuals and institutions. This is further complicated by the quantity of antiplatelet agents which differ in route of administration, dosage, onset of action, efficacy and ischemic and hemorrhagic complications. Clarifying the individual characteristics for each antiplatelet agent, and their associated risks, will increasingly become relevant as the practice of mechanical thrombectomy, stenting, coiling and flow diversion procedures grows. The aim of this review is to summarize the existing literature for the use of P2Y12 inhibitors in neurointerventional procedures, examine the quality of the evidence, and highlight areas in need of further research.Antiplatelet therapies are commonly used in neurointerventional procedures. However, specific guidelines for their use in these settings is lacking and it can often be difficult to balance the potential risks and benefits of these medications. Considering the continued growth and adoption of neurointerventional procedures, it is crucial to understand the properties of these agents in order to use them safely. Large-scale clinical trials are still needed to clarify many of these aspects for this emerging field. However, the existing literature already provides insight into which antiplatelet drugs are of benefit to the neurointerventionalist as well as their associated risks of ischemic and hemorrhagic complications. Hence, this review focuses on the applications of GPIIb/IIIA inhibitors to neurointerventional procedures.A gene addition therapy into the conducting airway epithelium is a potential cure for cystic fibrosis lung disease. Achieving sustained lung gene expression has proven difficult due to the natural barriers of the lung. The development of lentiviral (LV) vectors pseudotyped with viral envelopes that have a natural tropism to the airway has enabled persistent gene expression to be achieved in vivo. The aims of this study were to compare the yields of hemagglutinin (HA) and vesicular stomatitis virus-glycoprotein (VSV-G) pseudotyped HIV-1 vectors produced under the same conditions by our standard LV vector production method. We then sought to measure gene expression in mouse airways and to determine whether lysophosphatidylcholine (LPC) conditioning enhances short- and long-term gene expression. C57Bl/6 mouse airways were conditioned with 10 μL of 0.1% LPC or saline control, followed 1 h later by a 30 μL dose of an HA or VSV-G pseudotyped vector carrying either the LacZ or luciferase reporter genes. LacZ expression was assessed by X-gal staining after 7 days, while lung luminescence was quantified regularly for up to 18 months by bioluminescent imaging. The HA pseudotyped vectors had functional titers 25 to 60 times lower than the VSV-G pseudotyped vectors. Conditioning the lung with LPC significantly increased the total number of LacZ-transduced cells for both pseudotypes compared to saline control. Regardless of LPC conditioning, the VSV-G pseudotype produced higher initial levels of gene expression compared to HA. LPC conditioning did not increase the number of transduced basal cells for either pseudotype compared to saline, and was not required for long-term gene expression. Both pseudotyped vectors effectively transduced the upper conducting airways of wild-type mice. The use of LPC conditioning before vector delivery was not required in mouse lungs to produce long-term gene expression, but did improve short-term gene expression. To correlate sectoral choroidal vascularity with angiographic leakage in eyes with central serous chorioretinopathy (CSCR). This was a retrospective, cross-sectional study including patients with active CSCR. Multimodal imaging including fundus fluorescein angiography (FFA) and optical coherence tomography (OCT) were performed to identify le