Thiesen Stanley (forestniece77)

Tooth whitening is one of the most requested dental treatments, but it still presents some side effects. Indeed, the bleaching agent can generate patients' discomfort and dental hard tissue damages, not achieving an efficient and long-lasting treatment with optimum whitening effect. To overcome these limitations, the bleaching agents containing nano-hydroxyapatite can represent a reliable solution to avoid these detrimental effects. In this study, human third molars were treated with commercial bleaching agents, containing nano-hydroxyapatite (nHA) and 6% (at-home treatment), 12% and 18% (in-office treatments) of hydrogen peroxide (HP), named respectively G1, G2 and G3. The results were evaluated descriptively and analytically using Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray spectroscopy (EDS), comparing the treated groups with a commercial gel containing 10% carbamide peroxide (CONV) and with a non-treateentration of HP up to 12%, does not alter the morphological and chemical composition of the enamel surface and maintains its crystallinity. The obtained results suggest that the application of the tested commercial bleaching agents, with a concentration of HP up to 12%, does not alter the morphological and chemical composition of the enamel surface and maintains its crystallinity. Maternal nutrient restriction during pregnancy causes a metabolic disorder that threatens the offspring's health in humans and animals. However, the molecular mechanism of how undernutrition affecting hepatic metabolism of fetal or postnatal offspring is still unclear. We aimed to investigate transcriptomic changes of fetal livers in response to maternal malnutrition in goats during mid-gestation and to explore whether these changes would disappear when the nutrition was recovered to normal level during mid-gestation using goats ( ) as the experimental animals. Fifty-three pregnant goats were subjected to a control (100% of the maintenance requirements, CON) or a restricted (60% of the maintenance requirements on day 45 to day 100 of gestation and then realimentation, RES) diet. A total of 16 liver samples were collected from fetal goats on day 100 of gestation and goat kids of postnatal day 90 to obtain hepatic transcriptional profiles using RNA-Seq. Principal component analysis of the hepatic transcring mid-gestation causes hepatic metabolism programming in kid goats on a molecular level. Hepatic transcriptome analysis showed that maternal undernutrition promoted protein digestion and absorption in the fetal livers, while which restrained carbohydrate metabolism and citric acid cycle in the livers of kid goats after realimentation. The results indicate that maternal undernutrition during mid-gestation causes hepatic metabolism programming in kid goats on a molecular level.Peanut smut caused by Thecaphora frezii is a severe fungal disease currently endemic to Argentina and Brazil. The identification of smut resistant germplasm is crucial in view of the potential risk of a global spread. In a recent study, we reported new sources of smut resistance and demonstrated its introgression into elite peanut cultivars. Here, we revisited one of these sources (line I0322) to verify its presence in the U.S. peanut germplasm collection and to identify single nucleotide polymorphisms (SNPs) potentially associated with resistance. Five accessions of Arachis hypogaea subsp. fastigiata from the U.S. peanut collection, along with the resistant source and derived inbred lines were genotyped with a 48K SNP peanut array. A recently developed SNP genotyping platform called RNase H2 enzyme-based amplification (rhAmp) was further applied to validate selected SNPs in a larger number of individuals per accession. More than 14,000 SNPs and nine rhAmp assays confirmed the presence of a germplasm in the U.S. peanut co