Olsen Mclaughlin (forestcocoa25)
Volume holographic phase gratings possessing the saturated refractive index modulation amplitudes as large as 4.5×10-2 were recorded at a wavelength of 532 nm in a photopolymerizable nanoparticle-polymer composite (NPC) film dispersed with ultrahigh refractive index hyperbranched-polymer (HBP) organic nanoparticles. This prominent result was achieved by a combination of the HBP nanoparticles with triazine and aromatic ring units and an electron donor/acceptor photo-initiator system doped in an acrylate monomer blend with low viscosity. As a result, efficient mutual diffusion of HBP nanoparticles and monomer having their very large refractive index difference took place. Obtained results suggest a potentiality of our newly developed HBP-dispersed NPC gratings as efficient volume holographic optical elements for various photonic applications including wearable headsets for augmented and mixed reality.Drowning is one of the leading causes of death worldwide. The pathophysiology of drowning is complex and, sometimes, interpretation of the circumstances of death in the autopsy becomes the main source of information in its diagnosis. MTX-211 New advances in medical research, such as proteomics, especially in forensic pathology, are still in the development. We proposed to investigate the application of Mass Spectrometry-based technologies, to identify differentially expressed proteins that may act as potential biomarkers in the postmortem diagnosis of drowning. We performed a pilot proteomic experiment with the inclusion of two drowned and two control forensic cases. After applying restrictive parameters, we identified apolipoprotein A1 (ApoA1) and α-1 antitrypsin as differentially expressed between the two diagnostic groups. A validation experiment, with the determination of both proteins in 25 forensic cases (16 drowned and 9 controls) was performed, and we corroborated ApoA1 higher values in the drowning group, whereas α-1 antitrypsin showed lower levels. After adjusting by confounder factors, both remained as predictive independent factors for diagnosis of drowning (p = 0.010 and p = 0.022, respectively). We constructed ROC curves for biomarkers' levels attending at the origin of death and established an ApoA1 cut-off point of 100 mg/dL. Correct classification based on the diagnosis criteria was reached for 73.9% of the cases in a discriminant analysis. We propose apolipoprotein A1 (with our cutoff value for correct classification) and α-1 antitrypsin as valuable biomarkers of drowning. Our study, based on forensic cases, reveals our proteomic approach as a new complementary tool in the forensic diagnosis of drowning and, perhaps, in clinical future implications in drowned patients. However, this is a pilot approach, and future studies are necessary to consolidate our promising preliminary data.The development of high-throughput sequencing technologies and screening of big patient cohorts with familial and sporadic amyotrophic lateral sclerosis (ALS) led to the identification of a significant number of genetic variants, which are sometimes difficult to interpret. The American College of Medical Genetics and Genomics (ACMG) provided guidelines to help molecular geneticists and pathologists to interpret variants found in laboratory testing. We assessed the application of the ACMG criteria to ALS-related variants, combining data from literature with our experience. We analyzed a cohort of 498 ALS patients using massive parallel sequencing of ALS-associated genes and identified 280 variants with a minor allele frequency less then 1%. Examining all variants using the ACMG criteria, thus considering the type of variant, inheritance, familial segregation, and possible functional studies, we classified 20 variants as "pathogenic". In conclusion, ALS's genetic complexity, such as oligogenic inheritance, presence of genes acting as risk factors, and reduced penetrance, needs to be considered when interpreting variants. The goal of thi