Purcell Rafferty (flyeditor35)
The disposal of huge municipal sludge with high moisture content has led to numerous energy consumption and brought extensive concerns in the world. In this paper, three dewatering modes, ultrahigh-pressure mechanical dewatering mode (UMDW), pressurized electro-dewatering (PEDW) with constant voltage mode (U-PEDW) and constant voltage gradient mode (G-PEDW) were performed on a self-designed pressurized electro-dewatering apparatus for municipal sludge. The pore structures and moisture distributions were detected by low-field nuclear magnetic resonance technology. Meanwhile, the moisture distributions and quantitative bound strength were analyzed by the thermogravimetric differential scanning calorimetry test. Moreover, a pore-scale electro-osmosis model was accordingly developed based on the fractal characteristics of pore size distribution. Finally, the effect of dewatering modes and operating parameters on moisture content and energy consumption were examined in detail. The results indicate that the pore-scale electro-osmosis model show good consistency with experimental data. The electric field can drive the middle-layers-water to overcome the capillary pressure, and make G-PEDW removing more water than UMDW. The moisture content of dewatered municipal sludge by G-PEDW and U-PEDW reaches to 28.41% and 27.33%, respectively. Furthermore, the energy consumption of G-PEDW is 189.62Wh/kg.H2O, it is much lower than that of U-PEDW. Therefore, the G-PEDW mode with low moisture content and less energy consumption indicates best dewatering performance compared with UMDW and U-PEDW modes. The present work is helpful to understand the dewatering mechanisms of G-PEDW and provides useful guidelines for G-PEDW dewatering technology.Dredging and in situ adsorbent inactivation are two methods which are frequently used in eutrophic water bodies such as ponds, lakes and estuaries to control internal phosphorus (P) loading from sediments. However, their effects and modes on the control of sediment P loading has been seldom compared. In this study, a long-term sediment core incubation experiment in the field was undertaken to investigate changes in sediment P loading (P fluxes, supply ability and forms of P and transformation) comparing two remediation techniques, that of lanthanum-modified bentonite (LMB) addition or dredging to a control. A 360-day field investigation indicated that LMB addition more effectively reduced pore water P concentrations and sediment P fluxes than dredging in comparison with the control. On average, dredging and in situ LMB inactivation reduced the P flux by 82% and 90%, respectively relative to the control sediment. Whilst both the LMB inactivation and dredging can reduce the mobile P concentration, the impact of LMB in reducing mobile P was demonstrated to be more prolonged than that of dredging after 360 days. The P fraction composition in the LMB inactivated sediment differed significantly from the dredged and control sediment. Contrary to physical removal of dredging, chemical transformation of sediment mobile P and Al-P into Ca-P is the main function mode of LMB for sediment internal P control. Both LMB addition and dredging caused changes in the composition of sediment bacterial communities. Whilst LMB addition increased bacterial diversity, dredging temporarily reduced it. This study indicates that in situ inactivation by LMB is superior to dredging in the long-term control of sediment P loading.Persulfate-based advanced oxidation processes (PS-based AOPs) under UV, visible, or solar irradiation are being intensively investigated for water treatment. Tremendous advances have been made for enhancing the performance towards the destruction of target pollutants, but a deeper understanding of the role of light in different photo-activated PS-based AOPs is still needed as a basis for improving the efficiency. This paper intends to provide an in-depth review of the underlying photo-activation mechanisms and rece