Peterson Espensen (ferryferry0)
Engagement in the mental context reinstatement task in Experiment 2 eliminated the decrease in alpha/beta power. The results are consistent with the view that the observed alpha/beta decrease reflects context retrieval, which became obsolete when there was preceding mental context reinstatement.The growing implementation of digital education comes with an increased need to understand the impact of digital tools on learning. Previous behavioral studies have shown that handwriting on paper is more effective for learning than typing on a keyboard. However, the impact of writing with a digital pen on a tablet remains to be clarified. In the present study, we compared learning by handwriting with an ink pen on paper, handwriting with a digital pen on a tablet, and typing on a keyboard. Behavioral and electroencephalographic indices were measured immediately after learning with each writing tool. The moods of the subjects during the training were also assessed. The participants were divided according to their use of digital pen in their everyday lives, allowing us to take into account the effect of the familiarity with the digital pen on the learning process (familiar group vs. unfamiliar group). We performed an EEG experiment applying a repetition priming paradigm. In each trial, a learned foreign languats show that handwriting with a digital pen and tablet can increase the ability to learn compared with keyboard typing once the individuals are accustomed to it.Background While research has consistently identified an association between long-term cannabis use and memory impairments, few studies have examined this relationship in a polydrug context (i.e., when combining cannabis with other substances). Aims In this preliminary study, we used event-related potentials to examine the recognition process in a visual episodic memory task in cannabis users (CU) and cannabis polydrug users (PU). We hypothesized that CU and PU will have both-behavioral and psychophysiological-indicators of memory processes affected, compared to matched non-using controls with the PU expressing more severe changes. Methods 29 non-using controls (CG), 24 CU and 27 PU were enrolled into the study. All participants completed a visual learning recognition task while brain electrical activity was recorded. Event-related potentials were calculated for familiar (old) and new images from a signal recorded during a subsequent recognition test. We used receiver operating characteristic curves for behav group.The long-term effects of impairment have a negative impact on the quality of life of stroke patients in terms of not using the affected limb even after some recovery (i.e., learned non-use). Immersive virtual reality (IVR) has been introduced as a new approach for the treatment of stroke rehabilitation. We propose an IVR-based therapeutic approach to incorporate positive reinforcement components in motor coordination as opposed to constraint-induced movement therapy (CIMT). This study aimed to investigate the effect of IVR-reinforced physical therapy that incorporates positive reinforcement components in motor coordination. To simulate affected upper limb function loss in patients, a wrist weight was attached to the dominant hand of participant. Participants were asked to choose their right or left hand to reach toward a randomly allocated target. The movement of the virtual image of the upper limb was reinforced by visual feedback to participants, that is, the participants perceived their motor coordination as if their upper limb was moving to a greater degree than what was occurring in everyday life. We found that the use of the simulated affected limb was increased after the visual feedback enhancement intervention, and importantly, the effect was maintained even after gradual withdrawal of the visual amplification. The results suggest that positive reinforcement within the IVR could induce an effect on decision making in hand usage. The purpose of the