Rye Ehlers (fathermuscle38)
Thiol-yne reactions have drawn attention because of the click nature as well as the regular step-growth network nature of their products, despite the radical-mediated reactant. However, the factors governing the reaction pathways have not been examined using quantum chemical tools in a comprehensive manner. Thereupon, we have systematically investigated the mechanism of thiol-yne reactions, focusing on the structural influences of thiol and alkyne functionalities. The reaction kinetics, structure-reactivity relations, and E/Z diastereoselectivity of the products have been enlightened for the first cycle of the thiol-yne polymerization reaction. For this reason, a diverse set of 11 thiol-yne reactions with four thiols and eight alkynes was modeled by means of density functional theory. We performed a benchmark study and determined the M06-2X/6-31+G(d,p) level of theory as the best cost-effective methodology to model such reactions. Results reveal that spin density, the stabilities of sulfur radicals for propagation, and the stability of alkenyl intermediate radicals for the chain transfer are the determining factors of each reaction rate. Intramolecular π-π stacking interactions at transition-state structures are found to be responsible for Z diastereoselectivity.A pure inorganic uranyl phosphate-polyoxometalate of Na17Na@[(SbW9O33)2(UO2)6(PO3OH)6]·xH2O (abbreviated as Na@U6P6, with x ≈ 46) featuring a sandwich-type structure was prepared using Keggin-type trilacunary [α-B-SbW9O33]9- units as building blocks, which were formed in situ by SbCl3 and Na2WO4·2H2O. Crystal structural analysis showed that six UO22+ cations and six PO3OH2- anions generated a wheel-like cluster unit with a Na+ center ([Na@(UO2)6(PO3OH)6]+) that is stabilized by two [α-B-SbW9O33]9- units. Na@U6P6 displayed a solid-state photoluminescence quantum yield of 33% at 300 K. The temperature-dependent fluorescence emission spectra showed that Na@U6P6 has temperature-sensitive fluorescence in which its emission intensity decreased by 77% as the temperature increased from 200 to 300 K. These results suggest that such uranyl phosphate-polyoxometalate clusters could serve as potential temperature-sensitive molecular materials.The rational improvement of the enzyme catalytic activity is one of the most significant challenges in biotechnology. Most conventional strategies used to engineer enzymes involve selecting mutations to increase their thermostability. Determining good criteria for choosing these substitutions continues to be a challenge. Selleck iMDK In this work, we combine bioinformatics, electrostatic analysis, and molecular dynamics to predict beneficial mutations that may improve the thermostability of XynA from Bacillus subtilis. First, the Tanford-Kirkwood surface accessibility method is used to characterize each ionizable residue contribution to the protein native state stability. Residues identified to be destabilizing were mutated with the corresponding residues determined by the consensus or ancestral sequences at the same locations. Five mutants (K99T/N151D, K99T, S31R, N151D, and K154A) were investigated and compared with 12 control mutants derived from experimental approaches from the literature. Molecular dynamics results show that the mutants exhibited folding temperatures in the order K99T > K99T/N151D > S31R > N151D > WT > K154A. The combined approaches employed provide an effective strategy for low-cost enzyme optimization needed for large-scale biotechnological and medical applications.Interferon-induced transmembrane proteins (IFITMs) are S-palmitoylated proteins in vertebrates that restrict a diverse range of viruses. S-palmitoylated IFITM3 in particular engages incoming virus particles, prevents their cytoplasmic entry, and accelerates their lysosomal clearance by host cells. However, how S-palmitoylation modulates the structure and biophysical characteristics of IFITM3 to promote its antiviral activity remains unclear