Spence Troelsen (eggnoguganda33)
The objective of study was to assess the outcome of feeding six total mixed rations (TMR), differing in NDF and protein content, for their synergistic effect on ameliorating heat load of lactating Murrah buffaloes evident through improved physiological and production performance. Thirty six lactating Murrah buffaloes (587 ± 12.3, MY 9 ± 2.2, Parity 2.5 ± 1.5) were arranged in a 3 × 2 factorial design with three levels of dietary NDF (30, 34.5 and 37% dietary NDF) and two levels of metabolizable protein (MP; 7.0% and 8.4%). Buffaloes were fed either of six dietary treatments 30%NDF; 7.0% MP (CF1, as recommended), 34.5%NDF; 7.0% MP (MF1), 37%NDF; 7.0% MP (HF1), 30%NDF; 8.4% MP (CF2), 34.5%NDF; 8.4% MP (MF2) and 37%NDF; 8.4% MP (HF2). TMR offered with maize silage and respective concentrate for 90 days feeding trial. Fortnightly feed samples and weekly milk samples collection was done for analyses. Metabolic trial conducted in mid of experiment for estimating nutrient digestibility. Throughout the trial, THI level (79.7-83.8) denoted that buffaloes were exposed to stressful environment. Higher MP in diet reduced pulse rate in buffaloes as compared with lower MP diet. Rectal temperature was lower in Murrah buffaloes fed MF2 diet whereas; minimum breathing rate was recorded for high protein fed group. The MF2 diet increased dry matter intake (kg/d) by 2.7%, milk yield (kg/d) by 8.3% and feed efficiency (milk/DMI) by 7.2% as compared with CF1 group indicating reduced heat load. Increase in protein intake along with improved protein digestibility in MF2 group was recorded. Measured 6%FCM and ECM (kg/d), milk fat (%) and total solid (%) were higher in MF2 treatment group. Results revealed that 34.5% NDF and 8.4% MP have a positive influence on amelioration of heat stress in present experimental conditions.Currently, the effect of passive heat acclimation on aerobic performance is still controversial. Therefore, this study aimed to observe the effect of passive and intervallic exposure to high temperatures (100 ± 2 °C) in untrained males. Forty healthy untrained men participated in this investigation. They were randomised into a Control Group (CG; n = 18) and an Experimental Group (EG; n = 22). Both groups performed maximum incremental tests until exhaustion in normothermia (GXT1; 22 ± 2 °C), and 48h afterwards, in hyperthermia (GXT2; 42 ± 2 °C). The EG performed 9 sessions of intervallic exposure to heat (100 ± 2 °C) over 3 weeks. Subsequently, both groups performed two maximal incremental trials in normothermia (GXT3; 22 ± 2 °C) and 48h later, in hyperthermia (GXT4; 42 ± 2 °C). In each test, the maximal ergospirometric parameters and the aerobic (VT1), anaerobic (VT2) and recovery ventilatory thresholds were recorded. The Wilcoxon Test was used for intra-group comparisons and the Mann-Whitney U for inter-group comparisons. There were improvements in absolute VO2max (p = 0.049), W (p = 0.005) and O2pulse (p = 0.006) in hyperthermia. In VT1 there was an increase in W (p = 0.046), in VO2 in absolute (p = 0.025) and relative (p = 0.013) values, O2pulse (p = 0.006) and VE (p = 0.028) in hyperthermia. While W increased in hyperthermia (p = 0.022) at VT2. The results suggest that passive and intervallic acclimation at high temperatures improves performance in hyperthermia. This protocol could be implemented in athletes when they have to compete in hot environments.In this paper the effects of increased environmental temperature on the relative growth rate (RGR) and developmental time in 5th instar L. dispar larvae originating from unpolluted and polluted forests were analyzed. As indicators of the level of generated reactive oxygen species in thermal stress, we estimated midgut and hemolymph activity of the antioxidative enzymes, superoxide dismutase (SOD) and catalase (CAT), as well as the detoxifying enzymes glutathione S-transferase (GST), carboxylesterase (CaE) and acetylcholinesterase (AChE) from the midgut and brain tissue. We also