Hamilton Hays (editorvision1)
. In a population constructed from two modern wheat cultivars adapted to the southeast U.S., almost all additive genetic variation in plant growth traits is associated with known major variants or novel moderate-effect QTL. Major transgressive segregation was observed in this population despite the similar plant height and heading date characters of the parental lines. This segregation is being driven primarily by a small number of mapped QTL, instead of by many small-effect, undetected QTL. As most breeding populations in the southeast U.S. segregate for known QTL for these traits, genetic variation in plant height and heading date in these populations likely emerges from similar combinations of major and moderate effect QTL. We can make more accurate and cost-effective prediction models by targeted genotyping of key SNPs. Germline cells are important carriers of genetic and epigenetic information transmitted across generations in mammals. During the mammalian germline cell development cycle (i.e., the germline cycle), cell potency changes cyclically, accompanied by dynamic transcriptional changes and epigenetic reprogramming. Recently, to understand these dynamic and regulatory mechanisms, multiomic analyses, including transcriptomic and epigenomic analyses of DNA methylation, chromatin accessibility and histone modifications of germline cells, have been performed for different stages in human and mouse germline cycles. However, the long time span of the germline cycle and material scarcity of germline cells have largely limited the understanding of these dynamic characteristic changes. A tool that integrates the existing multiomics data and visualizes the overall continuous dynamic trends in the germline cycle can partially overcome such limitations. Here, we present GLEANER, a web server for GermLine cycle Expression ANas the first web server dedicated to the analysis and visualization of multiomics data related to the mammalian germline cycle. GLEANER is freely available at http//compbio-zhanglab.org/GLEANER . Relapsing fever (RF) borreliae are arthropod-borne spirochetes and some of them cause human diseases, which are characterized by relapsing or recurring episodes of fever. Recently, it has been classified into two groups soft tick-borne RF (STRF) borreliae and hard tick-borne RF (HTRF) borreliae. STRF borreliae include classical RF agents and HTRF borreliae, the latter of which include B. miyamotoi, a human pathogen recently identified in Eurasia and North America. In this study, we determined the genome sequences of 16 HTRF borreliae strains 15 B. miyamotoi strains (9 from Hokkaido Island, Japan, 3 from Honshu Island, Japan, and 3 from Mongolia) and a Borrelia sp. tHM16w. Chromosomal gene synteny was highly conserved among the HTRF strains sequenced in this study, even though they were isolated from different geographic regions and different tick species. Phylogenetic analysis based on core gene sequences revealed that HTRF and STRF borreliae are clearly distinguishable, with each forming a monophyletic ge. Our study clarifies the phylogenetic relationships between RF borreliae, and the data obtained will contribute to a better understanding of the evolutionary history of RF borreliae. The results of the present study, together with those from previous investigations, support the hypothesis that the common ancestor of borreliae was transmitted by hard-bodied ticks and that only STRF borreliae switched to using soft-bodied ticks as a vector, which was followed by the emergence of Borrelia recurrentis, lice-borne RF borreliae. Our study clarifies the phylogenetic relationships between RF borreliae, and the data obtained will contribute to a better understanding of the evolutionary history of RF borreliae. In dairy cattle populations in which crossbreeding has been used, animals show some level of diversity in their origins. In rotational crossbreeding, for instance