Muir Velasquez (edgeshelf9)
Standard calibration curves of six analytes showed satisfactory linearity (r2≥0.99 2) within the determined ranges. The lower limits of quantification were 0.5 ng/mL for paeoniflorin and liquiritin, 2.5 ng/mL for geniposide and saikosaponin b2 and 1.0 ng/mL for atractylenolide Ⅲ and paeonol, respectively. The intra-day and inter-day precision (RSD %) were all below 6.94 %, and the intra-day and inter-day accuracy (RE %) were within ± 6.10 %. The recovery and ME of six analytes were 85.99 %-98.10 % and 95.78%-108.06%, respectively. Additionally, the method we established in this experiment can be successfully used to study the pharmacokinetics of paeoniflorin and geniposide in beagle plasma. buy SEW 2871 Calcitonin salmon is an important peptide pharmaceutical, which is mainly used for the treatment of osteoporosis and hypercalcemia. Structurally related peptide impurities in a peptide pharmaceutical probably have side effect or even toxicity, thus needs to be carefully characterized according to pharmacopoeia. With the improvement of analytical techniques, liquid chromatography-high resolution mass spectrometry (LC-HRMS) has become a pivotal technique for the identification and quantification of structurally related peptide impurities in peptide materials. In this study, an LC-HRMS-based method has been developed for the identification and quantification of structurally related peptide impurities in calcitonin salmon material. With this method, 7 peptide impurities (> 1 mg/g) in United States Pharmacopoeia (USP) reference standard and 9 peptide impurities (> 1 mg/g) in European Pharmacopoeia (EP) reference standard were identified and accurately quantified. Besides the peptide impurities reported by USP and EP, several new impurities such as [7-Dehydroalanine] calcitonin salmon, triple-sulfate-calcitonin salmon, [26-Proline] calcitonin salmon, [14-Glutamic acid] calcitonin salmon, [20-Glutamic acid] calcitonin salmon, [26-Aspartic acid] calcitonin salmon, calcitonin salmon acid were observed in the reference standard materials studied. The total mass fractions of all structurally related peptide impurities in calcitonin salmon study materials were estimated to be 57.4 mg/g for USP and 46.3 mg/g for EP with associated expended uncertainties at a 95 % confidence level of 5.2 mg/g (k = 2) and 3.1 mg/g (k = 2), respectively. Guggulipid is known to be useful for hypercholesterolemia, arthritis, acne, and obesity. These activities are attributed to its two principal isomeric active constituents, viz., E- and Z-guggulsterones. There are several side effects reported for guggulipid, which include widespread erythematous papules in a morbilliform pattern and macules localized to the arms; swelling and erythema of the face with burning sensation; pruritis; and bullous lesions on the lower legs with associated headaches, myalgia and itching. We hypothesized that one probable reason for these toxic reactions could be the formation of electrophilic reactive metabolites (RMs) of guggulsterones and their subsequent reaction with cellular proteins. Unfortunately, no report exists in the literature highlighting detection of RMs of guggulsterone isomers. Accordingly, the present study was undertaken to investigate the potential of E- and Z-guggulsterones to form RMs in human liver microsomes (HLM) using glutathione (GSH) and N-acetylcysteine (NAC) as trapping agents. The generated samples were analysed using ultra-high performance liquid chromatography (UHPLC) coupled to an Orbitrap mass spectrometer. The analysis of incubations with trapping agents highlighted that hydroxylated metabolites of guggulsterone isomers showed adduction with GSH and NAC. Even direct adducts of guggulsterone isomers were observed with both the trapping agents. The in silico toxicity potential of E- and Z-guggulsterones and their RMs was predicted using ADMET Predictor™ software and comparison was made against reported toxicities of guggulipid. The effect of