Henriksen Le (eastball75)

This indicates that B-light is important as a signal to activate the β-glucosidase enzyme and release ABA during night. Altogether, the improved stomatal function and reduced transpiration in combination with increased [ABA] indicate that preharvest B-light plays an important role in governing stomatal functionality and ABA homeostasis under high RH and can be a useful method to improve postharvest water balance of roses.Climate warming-driven early leaf-out is expected to increase forest productivity but concurrently increases leaf exposure to spring frosts, which could reduce forests' net productivity. We hypothesized that due to their damaging effect on buds, spring frosts exert a stronger control on bud phenology than do growing degree-days. We monitored bud flush phenology of three white spruce seed sources (one local seed source from the boreal mixedwood forest and two seed sources from the temperate forest), one black spruce seed source originating from the boreal mixedwood forest and four nonlocal Norway spruce seed sources in 2016 and 2017 in two plantations located on both sides of the temperate-boreal mixedwood forest ecotone in eastern Canada (Quebec). We aimed to determine inter- and intraspecies variations in bud break timing and sensitivity to air temperature and photoperiod. We expected that bud break timing for boreal species and seed sources would be better synchronized with the decrease in frost probabilitye climate warming and limit future premature leaf-out, whereas the low photoperiod sensitivity in black spruce should not restrain leaf-out advancement with climate warming. Our results call for adapting the temperature-driven hypotheses of ecophysiological models predicting leaf-out to include spring frost probability.Pine wilt disease (PWD) caused by the pine wood nematode (PWN) Bursaphelenchus xylophilus is one of the devastating diseases affecting pine forests worldwide. Although effective control measurements are still missing, induction of resistance could represent a possible eco-friendly alternative. In this study, induced resistance-based in vitro and in vivo screening tests were carried out for selection of bacteria with the ability to suppress PWD. Out of 504 isolated bacteria, Bacillus thuringiensis JCK-1233 was selected for its ability to boost pathogenesis-related 1 (PR1) gene expression, a marker of systemic acquired resistance. Moreover, treatment of pine seedlings with B. thuringiensis JCK-1233 resulted in increased expression of other defense-related genes, and significantly inhibited PWD development under greenhouse conditions. However, B. thuringiensis JCK-1233 showed no direct nematicidal activity against B. xylophilus. To identify the effective compound responsible for the induction of resistance in B.ether, this study supports aerial spraying with eco-friendly biotic or abiotic agents as a valuable strategy that may mark an epoch for the control of PWD in pine forests.The mitogen-activated protein kinase (MAPK) cascade is a highly conserved signaling transduction module that transduces extracellular stimuli into intracellular responses in plants. Early studies of plant MAPKs focused on their functions in model plants. Based on the results of whole-genome sequencing, many MAPKs have been identified in horticultural plants, such as tomato and apple. Recent studies revealed that the MAPK cascade also plays crucial roles in the biotic and abiotic stress responses of horticultural plants. In this review, we summarize the composition and classification of MAPK cascades in horticultural plants and recent research on this cascade in responses to abiotic stresses (such as drought, extreme temperature and high salinity) and biotic stresses (such as pathogen infection). In addition, we discuss the most advanced research themes related to plant MAPK cascades, thus facilitating research on MAPK cascade functions in horticultural plants.When cultivated rice seed fall into fields, they may overwi