Castro McIntosh (earththomas1)

The CoNi-S/NS-rGO-550 shows the best efficiency for electrocatalytic OER among all electrodes with an overpotential of 290 mV at 10 mA cm-2 and a Tafel slope of 79.5 mV dec-1. By applying the iR compensation to remove resistance of the solution (2.1 Ω), the performance is further improved to achieve a current density of 10 mA cm-2 at an overpotential of 274 mV with a Tafel slope of 70.5 mV dec-1. This result is expected to be a promising electrocatalyst compared to the currently used electrocatalysts and a step for fuel cell applications in the future.Fabrication of macroporous polymers with functionally graded architecture or chemistry bears transformative potential in acoustic damping, energy storage materials, flexible electronics, and filtration but is hardly reachable with current processes. Here, we introduce thiol-ene chemistries in direct bubble writing, a recent technique for additive manufacturing of foams with locally controlled cell size, density, and macroscopic shape. Surfactant-free and solvent-free graded three-dimensional (3D) foams without drying-induced shrinkage were fabricated by direct bubble writing at an unparalleled ink viscosity of 410 cP (40 times higher than previous formulations). Functionalities including shape memory, high glass transition temperatures (>25 °C), and chemical gradients were demonstrated. These results extend direct bubble writing from aqueous inks to nonaqueous formulations at high liquid flow rates (3 mL min-1). Altogether, direct bubble writing with thiol-ene inks promises rapid one-step fabrication of functional materials with locally controlled gradients in the chemical, mechanical, and architectural domains.This paper proposes a highly efficient antibacterial system based on a synergistic combination of photodynamic therapy, photothermal therapy, and chemotherapy. Chitosan oligosaccharide functionalized graphene quantum dots (GQDs-COS) with short-term exposure to 450 nm visible light are used to promote rapid healing in bacteria-infected wounds. The GQDs undergo strong photochemical transformation to rapidly produce radical oxygen species and heat under light illumination, while the COS has an innate antimicrobial ability. Moreover, the positively charged GQDs-COS can easily capture bacteria via electrostatic interactions and kill Gram-positive and Gram-negative bacteria by multivalent interactions and synergistic effects. The antibacterial action of this nanocomposite causes irreversible damage to outer and inner bacterial membranes, resulting in cytoplasm leakage and death. The system has good hemocompatibility and low cytotoxicity and can improve the healing of infected wounds, as demonstrated by the examination of pathological tissue sections and inflammatory markers. These results suggest that GQDs anchored with bioactive molecules are a potential photo-activated antimicrobial strategy for anti-infective therapy.Anionic covalent organic framework is an emerging class of functional materials in which included ionic species of the opposite charges play an important role in the ion conduction and selective gas adsorption. Herein, we reported a facile method to construct a series of germanate-based anionic COFs (Ge-COFs) by reticulating dianionic hexa-coordinated GeO6 nodes with anthracene building blocks adopting a hcb topology in an extended 2D framework. A systematic change of pore properties in Ge-COFs was observed through the incorporation of three different alkali metal cations Li+, Na+, and K+. The intrinsically negatively charged backbone provides a host matrix with a homogeneous distribution of counter cations and poses variable and exciting features for gas adsorption and ionic conduction. Among the series, K+-based Ge-COF-K with a surface area of 1252 m2/g and pore volume of 0.84 cm3/g shows a maximum CO2 uptake of 126 cm3/g (247.4 mg/g) at 273 K and 1 bar, an IAST selectivity of 140 over N2. Ge-COF-K also exhibits a high SO2 kinetic breakthrough capacity of