Kaufman Osborne (earclass5)
In a simulated tumor microenvironment, DOX and PTX encapsulated in the polymersomes could take effect for a relatively longer period and could work synergistically. Thus, the photo-crosslinked and dual-responsive polymersomes can be considered as promising drug carriers in the field of tumor combination chemotherapy.Despite the increasing usage of porphyrinic metal-organic frameworks (MOFs) for combination therapy, the controlled encapsulation of inorganic nanoparticle-based therapeutics into such MOFs with specific structures has remained a major obstacle for improved tumor therapy. Here, we report the synthesis of a mesoporous MOF shell on the surface of gold nanorods (AuNRs), wherein a single AuNR is captured individually in single-crystalline MOFs with a controlled crystallographic orientation, for combinational phototherapy against solid tumors. The core-shell heterostructures have the benefits of a mesoporous structure and photoinduced singlet oxygen generation behavior characterized by the porphyrinic MOF shell, together with the plasmonic photothermal conversion characteristic of AuNRs. We demonstrated that the AuNR@MOF nanoplatform enables an efficient tumor treatment strategy by combining photodynamic therapy and photothermal therapy. We should emphasize that such systems could have applications beyond the field of cancer therapy, like plasmonic harvesting of light energy to induce and accelerate catalytic reactions within MOFs and multifunctional nanocarriers for agricultural formulations.The efficient penetration of drug nanocarriers into tumors is an important prerequisite for therapeutic and diagnostic success. The physicochemical properties of nanocarriers, including size, shape and surface chemistry have been shown to influence their transport in biological systems. Recent studies have shown that elongated nanoparticles (NPs) can exhibit advantageous properties in comparison to spherical NPs, but these experiments have involved a variety of different materials, many of which are characterized by a broad size distribution. Here we describe a series of rigid rod-like micelles of uniform width, with narrow length distributions, and common surface chemistry, and examine their cell uptake and penetration into multicellular tumor spheroids (MCTSs) formed from two human breast cancer cell lines (MDA-MB-436 and MDB-MB-231). These micelles were prepared from a polyferrocenylsilane (PFS) diblock copolymer (BCP) with a corona block consisting of a statistical polymer of aminopropyl methacrylamide anratio. MCTS of MDA-MB-231 cells had a less dense, more open structure than those formed by MDA-MB-436 cells. Here more extensive penetration was observed, particularly for the longer micelle samples.An efficient approach to access functionalized (2,3-dihydroisoxazol-4-yl) ketones has been developed by reacting nitrones 4 with ynones 7 or terminal ynones 10 in a one-pot fashion. The reaction went through a formal Sc(OTf)3-catalyzed [3 + 2]-cycloaddition process to generate a number of functionalized (2,3-dihydroisoxazol-4-yl) ketones 11aa-11aw, 11ba-11la and 12aa-12ae in moderate to good yields. Chlorogenic acid (5-caffeoylquinic acid), the most prominent polyphenolic compound in coffee, has been attributed multiple health-promoting effects such as anti-inflammatory, antidiabetic and antioxidative effects. These effects are dependent on the bioavailability of chlorogenic acid, which is determined by the pharmacokinetic properties absorption, distribution, metabolism and excretion (ADME). In order to have a better understanding of the biological properties of chlorogenic acid and to optimize formulation and dosing of chlorogenic acid-containing food supplements, information on the absorption of chlorogenic acid and its microbial biotransformation products is of essence. In the present work, the intestinal absorption of chlorogenic acid and quinic acid, one of its most prominent intestinal biotransformation pro