Whitney Abildgaard (eaglelatex32)

Glioblastoma (GBM) is the most common adult primary tumor of the CNS characterized by rapid growth and diffuse invasiveness into the brain parenchyma. The GBM resistance to chemotherapeutic drugs may be due to the presence of cancer stem cells (CSCs). The CSCs activate the same molecular pathways as healthy stem cells such as WNT, Sonic hedgehog (SHH), and Notch. Mutations or deregulations of those pathways play a key role in the proliferation and differentiation of their surrounding environment, leading to tumorigenesis. Here we investigated the effect of SHH signaling pathway inhibition in human GBM cells by using GANT-61, considering stem cell phenotype, cell proliferation, and cell death. Our results demonstrated that GANT-61 induces apoptosis and autophagy in GBM cells, by increasing the expression of LC3 II and cleaved caspase 3 and 9. Moreover, we observed that SHH signaling plays a crucial role in CSC phenotype maintenance, being also involved in the epithelial-mesenchymal transition (EMT) phenotype. We also noted that SHH pathway modulation can regulate cell proliferation as revealed through the analysis of Ki-67 and c-MYC expressions. We concluded that SHH signaling pathway inhibition may be a promising therapeutic approach to treat patients suffering from GBM refractory to traditional treatments.Salinity is one of the most important factors that limit the productivity of agricultural soils. Certain plant growth-promoting bacteria (PGPB) have the ability to stimulate the growth of crop plants even under salt stress. In the present study, we analysed the potential of PGPB Bacillus toyonensis COPE52 to improve the growth of tomato plants and its capacity to modify its membrane lipid and fatty acid composition under salt stress. Thus, strain COPE52 increased the relative amount of branched chain fatty acids (150i and 161∆9) and accumulation of an unknown membrane lipid, while phosphatidylethanolamine (PE) levels decreased during growth with 100 and 200 mM NaCl. Importantly, direct and indirect plant growth-promoting (PGP) mechanisms of B. toyonensis COPE52, such as indole-3-acetic acid (IAA), protease activity, biofilm formation, and antifungal activity against Botrytis cinerea, remained unchanged in the presence of NaCl in vitro, compared to controls without salt. In a greenhouse experiment, tomato plants (Lycopersicon esculentum 'Saladette') showed increased shoot and root length, higher dry biomass, and chlorophyll content when inoculated with B. toyonensis COPE52 at 0 and 100 mM NaCl. In summary, these results indicate that Bacillus toyonensis COPE52 can modify cell membrane lipid components as a potential protecting mechanism to maintain PGP traits under saline-soil conditions.A Gram-reaction negative, aerobic, non-motile, light yellow colored, and rod-shaped bacterium (designated Gr-4T) isolated from granules of a wastewater treatment plant, was characterized by a polyphasic approach to clarify its taxonomic position. Strain Gr-4T was observed to grew optimally at 30 ºC and at pH 7.0 on R2A medium. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain Gr-4T belongs to the genus Luteimonas of the family Xanthomonadaceae and was most closely related to Luteimonas padinae CDR SL 15T (99.1%), Luteimonas terricola DSM 22344T (98.5%) and Luteimonas arsenica 26-35T (97.6). The genome comprises 2,917,404 bp with a G+C content of 70.5 mol%. The ANI value between strain Gr-4T and Luteimonas padinae CDR SL 15T was 87.3%. The DNA-DNA relatedness value between strain Gr-4T and Luteimonas padinae CDR SL 15T, Luteimonas terricola DSM 22344T was 36.4 ± 1.3% and 14.2 ± 1.7%, respectively. The predominant quinone was Q-8. The major fatty acids were iso-C150, iso-C160 and summed feature 9 (comprising iso-C171ω9c and/or C160 10-methyl) supported the affiliation of strain Gr-4T to the genus Luteimonas. Moreover, the physiological, biochemical results, and low level of ANI and DNA-DNA relatedness value allowed