Gadegaard Russo (doubtarea4)

Thus, this novel and cost-effective ZnO/WBG layer holds great promise for large-scale and versatile oil/water separation. Additionally, this work presents a sustainable perspective of effectively utilizing waste brick to construct workable functionalized materials with tremendous application potential, showing far-reaching value and significance in fundamental research and environmental protection. The concentration of the bioavailable uranium fraction (Ubio) at the European scale was deduced by geochemical modelling considering several definitions found in the literature and the FOREGS European stream waters geochemical atlas dataset to produce a Ubio baseline. A sensitivity analysis was performed using three thermodynamic databases. We also investigated the link between total dissolved uranium (Uaq) concentrations, speciation and global stream water chemistry on the one hand, and the lithology and ages of the surrounding rocks on the other. The more U-enriched the stream sediments or rock type contexts are, which tends to be the case with rocks containing silicates (4.1 mg/kg), the less U-concentrated the stream waters are (0.15 μg/L). Sedimentary rocks lead to slightly higher Uaq concentrations (0.34 μg/L) even if the concentration in sediment (Used) is relatively low (1.6 mg/kg). This trend is reversed for Ubio, with higher concentrations in a crystalline context. The mean estimated Ubio value ranges from 1.5.10-3 to 65.3 ng/L and can fluctuate by 3 orders of magnitude depending on the considered definition as opposed to by 2 orders of magnitude accountable to differences between thermodynamic databases. The classification of the water in relation to the two surrounding rock lithologies makes it possible to reduce the mean variability for the Ubio concentrations. Irrespective of the definition of Ubio considered, in 59% of cases the Ubio fraction represents less than 1% of Uaq. Several threshold values relating to Ubio were proposed, assuming knowledge only of the aqueous concentrations of the major elements and Uaq. This study demonstrated statistical profiling consisting of the analysis of variance (ANOVA) and fold change to efficiently identify transformation products of an organic model compound (i.e., carbamazepine, CBZ) in ozonation. To this end, liquid chromatography (LC)-quadrupole time-of-flight mass spectrometry (QTOF-MS) was employed to measure the accurate masses of CBZ transformation products. Subsequently, statistical profiling was applied to differentiating features that are uniquely present in the ozonated samples from those in blanks and control (i.e., CBZ sample without ozonation). Selleck Kartogenin The identified transformation products had significant statistical power (i.e., power, 1-β > 0.8) in post hoc power analysis, which suggests that the profiling procedure can be an efficient means of reducing false negative in data analysis. 2-quinazolinone was newly reported here as a tentative transformation of CBZ during ozonation. In addition, a transformation product with one less carbon than CBZ, often called "anomalous" transformation product, was also found. While statistical profiling was applied to a model experiment, such an approach can be further utilized to screen many features with a higher data complexity such as non-targeted screening (NTS) and non-target analysis (NTA) for environmental samples. Single-walled carbon nanotubes (SWNTs) can be used as 1D electrochemical disinfection material for point-of-use water treatment but are limited by their poor durability and possible cytotoxicity. Immobilizing SWNTs in nanofibers with electrospinning served as slow-release technology develop a novel with a lasting antibacterial and (eco-) toxicological alleviation of SWNTs. Hence, the single-walled carbon nanotubes-polyacrylonitrile/polyurethane/polyaniline (SWNTs-PAN/TPU/PANI, SPTP) composite electrospun nanofiber membrane was successfully fabricated by co-ele