Mathews Guerrero (degreehole3)
For the fluorobenzylamines, quantitative performance was demonstrated over the range 0.05-5 % (v/v) for each impurity, while for alaninol, measurements were performed over the range of 70-99 % enantiomeric excess. This study suggests that MRR can be useful for validating the purity of pharmaceutical raw materials.The optimal concentrations of ethanol, Fe3+ and rice husk (RH) to enhance sludge dewaterability were determined by response surface methodology (RSM). Results showed the optimal concentrations of ethanol, Fe3+ and RH were 22.2 g/g DS, 239.9 mg/g DS and 348.9 mg/g DS, respectively, and the CST reduction efficiency reached 72.3%. CC-115 ic50 The transformation behavior and mechanism of the heavy metals (HMs) during conditioning process were determined in terms of total HMs content, leaching tests, and fraction distribution. The environmental risk of HMs was quantitatively evaluated after conditioning in terms of bioavailability and ecotoxicity, potential ecological risks, and pollution levels. Results showed that the high ecological risk of HMs in raw sludge cake is primarily dominated by Cd and the use of Fe3+ alone negatively affected the immobilization of HMs and reduction of leaching toxicity. However, after repeated conditioning with Fe3+ and ethanol, the total HMs content reduction values in sludge cake were 75%, 93%, 100%, 91%, and 74% for Pb, Cr, Cd, Zn, and Cu, respectively. The potential ecological risk index (PERI) and geoaccumulation indicated low or no overall environmental risk after repeated conditioning. Particularly, the risk of Cd was reduced from high risk to low risk after repeated conditioning according to the PERI. Ethanol/Fe3+-RH can effectively reduce HMs risk from the sludge cake in the dewatering tests.In the present work, a novel (2D/2D) accordion like CS@g‒C3N4/MX hybrid composite was prepared through one-pot hydro-thermal synthesis method and utilized as a catalyst for the degradation of organic persistent dyes such as methylene blue (MB) and rhodamine B (RhB). Because the removal of such organic compounds is a major dispute in environmental aspects. In this study, the bio-assisted g‒C3N4/MX nanosheets was utilized for the removal of organic dyes from aqueous solution under visible light irradiation, respectively. The CS@g-C3N4/MX photocatalyst showed high catalytic activity based on ~99% and ~98.5% degradation of MB and RhB within 60 and 40 min using visible light irradiation. This outcome could have resulted in greater catalytic enactment towards the degradation of other persistent pollutants with enhanced light absorption property and it can efficiently suppress photo-generated charge recombination, thus improving the interfacial charge transfer rate. The OH radical was being effective oxidative species involved in the CS@g-C3N4/MX system for the degradation of organic contaminants. Furthermore, CS@g-C3N4/MX showed excellent photo-stability over five consecutive cycles for the degradation of organic dyes with negligible loss of photocatalytic activity. Finally, the purposed catalytic mechanisms and degradation pathways of MB and RhB were systematically discussed in detail based on experimental results. Thus, the organics which oxidized into ring-opened compounds such as ethoxyethane, butadiene etc., to non-toxic products like H2O, CO2 and some mineral salts.The study aimed at investigating the performance of anaerobic dynamic MBR (AnDMBR) for the treatment of synthetic textile wastewater. A laboratory scale anaerobic bioreactor was operated to test nylon mesh support materials with different pore sizes (20 μm, 53 μm and 100 μm). The performances of the AnDMBR were evaluated with a stimulated wastewater containing 1,000 mg.L-1 COD and 100 mg.L-1 dye (Remazol Brilliant Violet 5R). To develop an effective dynamic cake layer on the support material, different operational strategies, i.e. high flux, continuous and intermittently biogas recycle were studied for process optimization and incr