Lundgren Jakobsen (deathhorse81)
9 V (vs reversible hydrogen electrode, j = 391 mA cm-2), which represents the best crystalline catalyst for electrocatalytic CO2-to-CH4 conversion to date. Moreover, the detailed DFT calculations also prove that the cuprophilic interactions can effectively facilitate the electroreduction of CO2 to CH4 by decreasing the Gibbs free energy change of potential determining step (*H2COOH → *OCH2). Significantly, this work first explored the effect of intrinsic cuprophilic interactions of Cu(I)-based catalysts on the electrocatalytic performance of CO2RR and provides an important case study for designing more stable and efficient crystalline catalysts to reduce CO2 to high-value carbon products.Overcoming multiple biological barriers, including circulation time in vivo, tumor vascular endothelium, reticuloendothelial system (RES), extracellular matrix (ECM), etc., is the key to improve the therapeutic efficacy of drug delivery systems in treating tumors. Inspired by the ability of natural erythrocytes to cross multiple barriers, in this study, a biomimetic delivery system named NE@DOX-Ang2 was developed for enhancing the chemotherapy of breast cancer, which employed nano-erythrocyte (NE) encapsulating doxorubicin (DOX) and surface modification with a targeted angiopep-2 peptide (Ang2). NE@DOX-Ang2 enhanced the capacity to cross biological barriers in a three-dimensional (3D) tumor spheroid model and in vivo in mice. Compared with a conventional drug delivery system of liposomes, the half-life of NE@DOX-Ang2 increased approximately 2.5 times. Moreover, NE@DOX-Ang2 exhibited excellent tumor-targeting ability and antitumor effects in vitro and in vivo. Briefly, the prepared nano-erythrocyte drug carrier has features of favorable biocompatibility and low immunogenicity and the advantage of prolonging the half-life of drugs, which may provide a novel perspective for development of clinically available nanomedicines.Density Functional Theory (DFT) calculations coupled with several exchange-correlation functionals were used for the prediction of Mössbauer hyperfine parameters of 36 bis-axially coordinated iron(II) phthalocyanine complexes with the general formulas PcFeL2, PcFeL'L″, and [PcFeX2]2-, including four new compounds. Both gas-phase and PCM calculations using BPW91 and MN12L exchange-correlation functionals were found to accurately predict both Mössbauer quadrupole splittings and the correct trends in experimentally observed isomer shifts. In comparison, hybrid exchange-correlation functionals underestimated quadrupole splittings, while still accurately predicted isomer shifts. Out of ∼40 exchange-correlation functionals tested, only MN12L was found to correctly reproduce quadrupole splitting trends in the PcFeL2 complexes coordinated with phosphorus-donor axial ligands (i.e., P(OnBu)3 ≈ P(OEt)3 less then PMe3 less then P[(CH2O)2CH2]-p-C6H4NO2 less then PEt3 ≈ PnBu3). Natural Bond Orbital (NBO) analysis was successfully used to explain the general trends in the observed quadrupole splitting for all compounds of interest. Lenvatinib molecular weight In particular, the general trends in the quadrupole splitting correlate well with the axial ligand dependent, NBO-predicted population of the 3dz2 orbital of the Fe ion and are reflective of the hypothesis proposed by Ohya and co-workers ( Inorg. Chem., 1984, 23, 1303) on the adaptability of the phthalocyanine's π-system toward Fe-Lax interactions. The first X-ray crystal structure of a PcFeL2 complex with axial phosphine ligands is also reported.We report the synthesis of colloidal EuS, La2S3, and LaS2 nanocrystals between 150 and 255 °C using rare-earth iodides in oleylamine. The sulfur source dictates phase selection between La2S3 and LaS2, which are stabilized for the first time as colloidal nanocrystals. The indirect bandgap absorption of LaS2 shifts from 635 nm for nanoellipsoids to 365 nm for square-based nanoplates. Er3+ photoluminescence in La2S3Er3+ (10%) is sensitized by t