Whalen Humphries (dashshame35)

Rice is the model plant system for monocots and the sequencing of its genome has led to the identification of a vast array of genes for characterization. The tedious and time-consuming effort of raising rice transgenics has significantly delayed the pace of rice research. The lack of highly efficient transient assay protocol for rice has only added to the woes which could have otherwise helped in rapid deciphering of the functions of genes. Here, we describe a technique for efficient transient gene expression in rice seedlings. It makes use of co-cultivation of 6-day-old rice seedlings with Agrobacterium in the presence of a medium containing Silwet® L-77, acetosyringone and glucose. Seedlings can be visualized 9 days after co-cultivation for transient expression. The use of young seedlings helps in significantly reducing the duration of the experiment and facilitates the visualization of rice cells under the microscope as young leaves are thinner than mature rice leaves. Further, growth of seedlings at low temperature, and the use of surfactant along with wounding and vacuum infiltration steps significantly increases the efficiency of this protocol and helps in bypassing the natural barriers in rice leaves, which hinders Agrobacterium-based transformation in this plant. This technique, therefore, provides a shorter, efficient and cost-effective way to study transient gene function in intact rice seedling without the need for a specialized device like particle gun.The therapeutic use of medical Cannabis is growing, and so is the need for standardized and therapeutically stable Cannabis products for patients. The therapeutic effects of Cannabis largely depend on the content of its pharmacologically active secondary metabolites and their interactions, mainly terpenoids and phytocannabinoids. Once harvested and during storage, these natural compounds may decarboxylate, oxidize, isomerize, react photochemically, evaporate and more. Despite its widespread and increasing use, however, data on the stability of most of the plant's terpenoids and phytocannabinoids during storage is scarce. In this study, we therefore aimed to determine postharvest optimal storage conditions for preserving the composition of naturally biosynthesized secondary metabolites in Cannabis inflorescences and Cannabis extracts. To this end, Cannabis inflorescences (whole versus ground samples) and Cannabis extracts (dissolved in different solvents) from (-)-Δ9-trans-tetrahydrocannabinol- or cannabidiol-rich chemovars, were stored in the dark at various temperatures (25, 4, -30 and -80°C), and their phytocannabinoid and terpenoid profiles were analyzed over the course of 1 year. Akti-1/2 found that in both Cannabis inflorescences and extracts, a storage temperature of 25°C led to the largest changes in the concentrations of the natural phytocannabinoids over time, making this the most unfavorable temperature compared with all others examined here. Olive oil was found to be the best vehicle for preserving the natural phytocannabinoid composition of the extracts. Terpenoid concentrations were found to decrease rapidly under all storage conditions, but temperatures lower than -20°C and grinding of the inflorescences were the least favorable conditions. Overall, our conclusions point that storage of whole inflorescences and extracts dissolved in olive oil, at 4°C, were the optimal postharvest conditions for Cannabis.Damage-associated molecular patterns (DAMPs) are an ancient form of tissue-derived danger or alarm signals that initiate cellular signaling cascades, which often initiate defined defense responses. A DAMP can be any molecule that is usually not exposed to cells such as cell wall components, peptides, nucleic acid fragments, eATP and other compounds. DAMPs might be revealed upon tissue damage or during attack. Typically, DAMPs are derived from the injured organism. Almost all eukaryotes can generate and respond to DAMPs, including plants. Besides the