Benjamin Pike (crowddanger00)
The study of insect responses to colour has mainly focused on flying species and morphs, however colour cues are likely to be important for insect positioning within the canopy. We examine the role of illumination colour in canopy positioning of apterous Myzus persicae (Sulzer) using both a field experiment, utilising various UV-manipulating optical filters, and a laboratory experiment using video tracking of individuals illuminated by a variable intensity UVA-Blue-Green LED-array. In the field experiment, approximately twice as many aphids were located on exposed leaf surfaces under UV-deficient environments compared to UV-rich environments. U0126 solubility dmso The lab experiment showed all three M. persicae photoreceptors were involved in a visually-mediated feeding/avoidance behaviour. Highly UV-rich, green-deficient environments were up to 3 times as likely to trigger an avoidance behaviour compared to UV-absent, green-rich environments such as those found below the leaf surface. We show that apterous M. persicae use this, in addition to other cues, in order to locate feeding positions that minimise exposure to direct sunlight. This has relevance to both the fundamental understanding of photoprotective behaviour in Hemiptera as well as to applied research of crop production environments that disrupt pest behaviour.Diabetic cardiac fibrosis is one of the main pathological manifestations of diabetic cardiomyopathy (DCM). Cardiac fibroblast autophagy plays critical roles in diabetic cardiac fibrosis, however, the underlying mechanism of cardiac fibroblast autophagy and diabetic cardiac fibrosis still largely unknown. The aim of the study was to investigate the mechanism of DNMT1 mediated DNA methylation alterations control cardiac fibroblast autophagy in diabetic cardiac fibrosis. We employed streptozotocin (STZ)-induced rats DCM, DCM patient and Hcy induced cardiac fibroblast autophagy. Heart tissue sections were stained with H&E, Sirius Red and Masson's trichrome stain. The expression of DNMT1, AR, Collagen genes mRNA was detected by qRT-PCR. MSP and BSP detected the methylation status of the AR promoter. The expression of DNMT1, AR, Collagen and autophagy-related proteins were detected by Western blotting, Immunofluorescence, Immunohistochemistry. Gain and loss function of AR and DNMT1 in cardiac fibroblast was analyzed. DNMT1 inhibition or knockdown elevated the expression of AR in cardiac fibroblast. Furthermore, we found that AR negatively regulation of Hcy induced cardiac fibroblast autophagy. We demonstrated that DNMT1 enhances cardiac fibroblast autophagy in diabetic cardiac fibrosis through inhibiting AR axis. In conclusion, our results provide new insight into the DNMT1 inactivation of AR axis triggers cardiac fibroblast autophagy in diabetic cardiac fibrosis.Although the insulin-like peptide hormone INSL3 and its cognate receptor RXFP2 (relaxin-family peptide receptor 2) have existed throughout chordate evolution, their physiological diversification appears to be linked closely with mammalian emergence and radiation. In contrast, they have been lost in birds and reptiles. Both hormone and receptor are expressed from autosomal genes which have maintained their synteny across vertebrate evolution. Whereas the INSL3 gene comprises only two exons closely linked to the JAK3 gene, RXFP2 is normally encoded by 18 exons. Both genes, however, are subject to alternative splicing to yield a variety of possibly inactive or antagonistic molecules. In mammals, the INSL3-RXFP2 dyad has maintained a probably primitive association with gametogenesis, seen also in fish, whereby INSL3 promotes the survival, growth and differentiation of male germ cells in the testis and follicle development in the ovary. In addition, however, the INSL3/RXFP2 system has adopted a typical 'neohormone' profile, essential for the promotion of internal fertilisation and viviparity; fetal INSL3 is essential for the first phase of testicular desc