Hvid Oddershede (cropcamel00)

Rice blast disease, caused by Magnaporthe oryzae, is one of the most importance diseases of rice production worldwide. The keyrole of defense mechanism to combat this fungus in rice follows the gene-for-gene concept, which a plant resistant (R) gene product recognizes a fungal avirulent (AVR) effector and triggers the hypersensitive response. However, the AVR genes have been shown to be rapidly evolving resulting in high level of genetic diversity. The aims of this study were to examine the nucleotide sequence variation of AVR-Pita1 gene in Thai rice blast isolates and to identify the severity of blast disease using isogenic line of Pita gene. Seventy-six rice blast isolates collected from different parts of Thailand were used. Gene specific primers for AVR-Pita1 gene coding sequence were designed and used for identifying the genetic diversity of AVR-Pita1 gene by PCR amplification and sequencing. The obtained sequences were analysed for genetic variation and genetic relationship. Our results revealed the association between the sequence variations of AVR-Pita1 and selective forces from Pita gene. This phenomenon demonstrated the coevolution between rice blast resistant gene in rice and avirulent gene in blast fungus. The information about variation and evolutionary mechanisms of AVR gene obtained from this study can be used in rice blast resistant breeding programme.Powdery mildew (Blumeria graminis f. sp. Tritici, (Bgt)) is an important worldwide fungal foliar disease of wheat (Triticum aestivum) responsible for severe yield losses. The development of resistance genes and dissection of the resistance mechanism will therefore be beneficial in wheat breeding. The Bgt resistance gene PmAS846 was transferred to the hexaploid wheat lines N9134 from Triticum dicoccoides, and it is still one of the most effective resistance genes. Here, by RNA sequencing, we identified three co-expressed gene modules using pairwise comparisons and weighted gene co-expression network analysis during wheat-Bgt interactions compared with mock-infected plants. Hub genes of stress-specific modules were significantly enriched in spliceosomes, phagosomes, the mRNA surveillance pathway, protein processing in the endoplasmic reticulum, and endocytosis. Induced module genes located on chromosome 5BL were selected to construct a protein-protein interaction network. Several proteins were predicted as the key hub node, including Hsp70, DEAD/DEAH box RNA helicase PRH75, elongation factor EF-2, cell division cycle 5, ARF guanine-nucleotide exchange factor GNOM-like, and protein phosphatase 2C 70 protein, which interacted with several disease resistance proteins such as RLP37, RPP13 and RPS2 analogues. Gene ontology enrichment results showed that wheat could activate binding functional genes via an mRNA transcription mechanism in response to Bgt stress. Of these node genes, GNOM-like, PP2C isoform X1 and transmembrane 9 superfamily member 9 were mapped onto the genetic fragment of PmAS846 with a distance of 4.8 Mb. This work provides the foundations for understanding the resistance mechanism and cloning the resistance gene PmAS846.The relationship between the long noncoding RNA (lncRNA) expression and oesophageal cancer prognosis has been widely studied, but less consensus has been reached. We conducted this study to evaluate the relationship between the expression of lncRNAs and the prognosis and clinical pathology of oesophageal cancer. We conducted a systematic search of PubMed, EMBASE and Cochrane Library until 25 January 2019. Studies that evaluated the associations of a specific lncRNA with survival and/or clinicopathology of oesophageal cancer were included. Pooled hazard ratios (HRs), odds ratios (ORs), and corresponding 95% confidence intervals (CIs) were calculated using fixed or random-effect models. Sensitivity analysis was used to verify the stability of results. Publication bias was detected usingBegg tests and adjusted utilizing the trim-and-fill