Grossman Lange (costtub36)
The sludge volume index in the pilot settling tank was almost constant at around 120 mL.g -1. This suggests the possibility of managing OMWW by simple injection at a given percentage in already functioning conventional AS treating UWW.In this study, peroxydisulfate (PDS) was successfully activated by UV-irradiation for the degradation of paracetamol (PCT) frequently detected in the environment. Results showed that increasing the initial PDS concentration from 5 to 20 mM promote the removal of PCT from 49.3% to 97.5% after 240 min of reaction time. As the initial PCT concentration increased from 0.066 to 0.132 mM, the degradation efficiency of PCT decreased from 98% to 73% after 240 min of reaction time, while the optimal pH was found to be 6. It is apparent that the degradation rate of PCT was favored by the lamp power regardless of the initial PCT concentration, for 0.132 mM of PCT, the degradation efficiency increased from 73% to 95% when the lamp power increased from 9 to 30 W, respectively. The kinetic of degradation of the PCT was described by a pseudo-second order kinetic model. The model obtained by central composite design led to the following optimal conditions for PCT degradation 0.132 mM initial PCT concentration, 20 mM PDS dose, pH solution 6 and lamp power 30 W led to the removal of 92% of PCT at 25 °C within 240 min of reaction time.This work focuses on the treatment of a dye solution, C.I. Basic Blue 41 (BB41), and industrial wastewater by UV/TiO2 photocatalytic process using aqueous catalyst suspensions of titanium dioxide (TiO2), Degussa P25. 4ChloroDLphenylalanine The procedures were carried out in a semi-pilot scale prototype solar photoreactor under solar radiation. Response surface methodology (RSM) based on Box-Wilson design was applied to assess individual effects of the five main independent parameters initial dye concentration ([BB41]), TiO2 concentration ([TiO2]), flow rate (Q) initial pH and accumulated solar energy (Qvn) on the decolorization efficiency and to optimise the UV/TiO2 process. Photocatalytic mineralisation was carried out at the optimal conditions found by RSM and results were evaluated by total organic carbon (TOC) abatement for BB41 sloution and industrial wastewater. The optimal conditions found by RSM were 0.4 g/L, 14.04 mg/L, 1,479.6 L/h, 5.52 and 80 KJ/L for TiO2 concentration, initial dye concentration, flow rate, initial pH and accumulated solar energy, respectively. Photocatalytic mineralisation results show that for accumulated visible solar energy equal to 377.714 kJ/L (after 6 hours of irradiation), under these conditions, the percentage of the initial TOC reduction is about 88% and 85.5% for industrial waste and BB41 solution, respectively.A scientific basis is given to the traditional method of inferring effluent quality based on visualization of samples in transparent flasks. A scale of 1-6, with different printed grey intensities, is placed behind transparent PET bottles containing the sample, and gives an indication of the range of turbidity in the sample (1 is the most transparent and can only be visualized if the effluent is well clarified; in the other spectrum, 6 is the darkest and indicates highly turbid effluents). Turbidity has been correlated with total suspended solids (TSS), particulate biochemical oxygen demand (BOD) and particulate chemical oxygen demand (COD) based on thousands of monitored data collected in the effluent from seven different treatment processes in Brazil upflow anaerobic sludge blanket (UASB) reactor, trickling filters, activated sludge, horizontal wetland, vertical wetland, polishing ponds and coarse filter after pond. The method is simple and instantaneous, can be used in virtually all places and in every visit of the operator to the remote treatment plant, allows recording of the image in smartphones, does not use any equipment, chemicals or energy, and has been showed to represent well the effluent quality of existing treatment plan