Stanton Tillman (copycircle24)

5 years. However, no difference was found in the influence of socio-emotional competence on cool and hot executive function. Possible explanations for these associations between socio-emotional competence and executive function are discussed.To illustrate methods for assessing environmental exposures associated with lung cancer risk, we investigated anthropogenic based air pollutant data in a major metropolitan area using United States-Environmental Protection Agency (US-EPA) Toxic Release Inventory (TRI) (1987-2017), and PM2.5 (1998-2016) and NO2 (1996-2012) concentrations from NASA satellite data. We studied chemicals reported according to the following five exposome features (1) International Agency for Research on Cancer (IARC) cancer grouping; (2) priority EPA polycyclic aromatic hydrocarbons (PAHs); (3) component of diesel exhaust; (4) status as a volatile organic compound (VOC); and (5) evidence of lung carcinogenesis. Published articles from PubChem were tallied for occurrences of 10 key characteristics of cancer-causing agents on those chemicals. Zone Improvement Plan (ZIP) codes with higher exposures were identified in two ways (1) combined mean exposure from all features, and (2) hazard index derived through a multi-step multi-criteria decision analysis (MMCDA) process. VOCs, IARC Group 1 carcinogens consisted 82.3% and 11.5% of the reported TRI emissions, respectively. ZIP codes along major highways tended to have greater exposure. The MMCDA approach yielded hazard indices based on imputed toxicity, occurrence, and persistence for risk assessment. Despite many studies describing environmental exposures and lung cancer risk, this study develops a method to integrate these exposures into population-based exposure estimates that could be incorporated into future lung cancer screening trials and benefit public health surveillance of lung cancer incidence. Our methodology may be applied to probe other hazardous exposures for other cancers.An automatic calibration framework of water quality parameters for surface runoff during modeling with InfoWorks ICM was constructed. The framework is based on a genetic algorithm (GA) and fully considers the calibration sequence for multiple water pollutants, namely, total suspended solids (TSS), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorous (TP). Meanwhile, four different objective functions including the Nash-Sutcliff efficiency coefficient (NSE), coefficient of determination (R2), percentage error in the peak (PEP), and percentage bias (PBIAS) were selected as fitness evaluators for the GA. The framework was applied successfully to a specific area of Fuzhou in China, and the multi-objective results were compared with the single-objective results. The comprehensive indexes of TSS, COD, TN, and TP by multi-objective calibration were lower than that of the single-objective calibration in both scenarios. Compared with single-objective calibration, the iterations to reach the optimal value were shortened 9, 5, 13, and 15 iterations by multi-objective calibration. Therefore, the findings showed that the multi-objective function GA was more balanced and more efficient than the single-objective function GA. Then, the uncertainty of the model was evaluated by using the samples generated by automatic calibration, which provided a reliable basis for the subsequent application of the model. This framework can be applied to other programs through adjustments of the number and weight of objective functions according to the specific situation, which will make the modeling more efficient and accurate.Regional estimates of VOC fluxes focus largely on emissions from the canopy and omit potential contributions from the forest floor including soil, litter and understorey vegetation. Here, we measured monoterpene emissions every 2 months over 2 years from logged tropical forest and oil palm plantation floor in Malaysian Bo