Flynn Ferrell (conesugar36)

On the other hand, Jiotilla has a high content of biologically active pigment, i.e., betaxanthins (4.17 ± 0.35 mg/g dry sample). The antioxidant activities of clarified extracts of chico and jiotilla were 80.01 ± 5.10 and 280.88 ± 7.62 mg/100 g fresh sample (DPPH method), respectively. From the cytotoxicity perspective against cancer cell lines, i.e., CaCo-2, MCF-7, HepG2, and PC-3, the clarified extracts of chico showed cytotoxicity (%cell viability) in CaCo-2 (49.7 ± 0.01%) and MCF-7 (45.56 ± 0.05%). A normal fibroblast cell line (NIH/3T3) was used, as a control, for comparison purposes. While jiotilla extract had cytotoxicity against HepG2 (47.31 ± 0.03%) and PC-3 (53.65 ± 0.04%). #link# These results demonstrated that Chico and jiotilla are excellent resources of biologically active constituents with nutraceuticals potentialities.The topical administration of active compounds represents an advantageous strategy to reach the various skin components as well as its appendages. Pilosebaceous follicles are skin appendages originating in the deeper skin layers. They are very difficult to target, and hence higher active dosages are generally required to achieve effective biological responses, thus favoring the rise of side effects. The aim of this work was to design a supramolecular colloidal carrier, i.e., a liquid crystal nanocarrier, for the selective delivery of active compounds into the pilosebaceous follicle. This nanocarrier showed mean sizes of ~80 nm, a good stability, a negative surface charge, and great safety properties. In vitro studies highlighted its ability to contain and release different substances and to successfully permeate the skin. Minoxidil was encapsulated in the nanocarriers and the in vivo biological effect was compared with a conventional dosage form. Minoxidil-loaded liquid crystal nanocarrier was able to selectively reach the pilosebaceous follicle, thus allowing an increased biological effectiveness of the delivered active in terms of biological response, duration of the biological effects, and reduction of collaterals. Our investigation showed that liquid crystal nanocarriers represent a promising device for the treatment of different pilosebaceous follicular impairments/diseases.This work focuses on the development of a novel organic-inorganic photoactive material composited by aggregation-induced emission luminogens (AIE) and CdS. Tetraphenylethene-based AIE (TPE-Ca) is synthesized on CdS to form CdS/TPE-Ca electrode, due to its suitable band structure and potential capability of renewable energy production. The CdS/TPE-Ca electrode presents over three-fold improved photocurrent density and dramatically reduced interfacial resistance, compared with the pure CdS electrode. In addition, the engineering of the band alignment allows the holes to accumulate on the valance band of TPE-Ca, which would partially prevent the CdS from photo-corrosion, thus improving the stability of the sacrificial-free electrolyte photoelectrochemical cell.A commercially available microfluidics flow cell was utilized together with widefield fluorescence microscopy to evaluate the effects of disinfectants on bacterial strains. The flow cell's inner surface supports the formation of biofilms of numerous bacterial species. The modular setup of the flow cell accessories allows connection to syringes, pumps and collection vials, facilitating aseptic experiments in a controlled fluidics environment which can be documented with precisely timed microscopy imaging. The flow cell is inoculated with a suspension of bacteria in a nutrient medium and incubated for several days allowing bacterial cells to form a biofilm. Shortly before performing an assay, the biofilm is labelled with a dual-fluorescent DNA probe which distinguishes unharmed and damaged bacteria. Then a disinfectant sample (or control) is gently injected and time-lapse imaging is used for quantifying the course of bacterial biomass response. We use a simplified widef