Pate Sahl (cokesoil15)
Owing to the high sensitivity of the in situ AuNPs, simplicity of portable device fabrication, and rapid colorimetric detection, we strongly believe that the fabricated portable device could serve as a kit for rapid POCT for instantaneous detection of infectious diseases, and could be readily usable at the bedside.Focused ultrasound (FU) is in demand for clinical cancer therapy, but the possible thermal injury to the normal peripheral tissues limits the usage of the ablative FU for tumors with a large size; therefore research efforts have been made to minimize the possible side effects induced by the FU treatment. Non-ablative focused ultrasound assisted chemotherapy could open a new avenue for the development of cancer therapy technology. Here, low intensity focused ultrasound (LIFU) for controlled quick intracellular release of small molecules (Mw ≤ 1000 Da) without acute cell damage is demonstrated. The release is achieved by a composite poly(allylamine hydrochloride) (PAH)/poly-(sodium 4-styrenesulfonate) (PSS)/SiO2 microcapsules which are highly sensitive to LIFU and can be effectively broken by weak cavitation effects. Most PAH/PSS/SiO2 capsules in B50 rat neuronal cells can be ruptured and release rhodamine B (Rh-B) into the cytosol within only 30 s of 0.75 W cm-2 LIFU treatment, as demonstrated by the CLSM results. While the same LIFU treatment shows no obvious damage to cells, as proved by the live/dead experiment, showing that 90% of cells remain alive.The environment enclosing an ionic species has a critical effect on its reactivity. In a more general sense, medium effects are not limited to the solvent, but involve the counter ion effect (ion pairing), formation of larger aggregates and structured environment as provided by the host in the case of host-guest complexes. In this review, a general view of the medium effect on anion-molecule reactions is presented. Nucleophilic substitution reactions of aliphatic (SN2) and aromatic (SNAr) systems, as well as elimination reactions (E2), are the focus of the discussion. In particular, nucleophilic fluorination with KF, CsF and tetraalkylammonium fluoride was used as the main model, because of the importance of this kind of reaction and the recent advances in the study of these systems. The solvent effect, ion pairing, formation of aggregates and formation of complexes with crown ethers, cryptands and calixarenes are discussed. For a deeper insight into the medium effect, many results of reliable theoretical calculations in close agreement with experiments were chosen as examples.Bromonium salts have been typically but infrequently used in various reactions as good leaving groups or as aryl or vinyl transfer reagents owing to their extremely high nucleofugality. Herein, we report the synthesis of novel, stable bromonium salts and their first catalytic application to the Michael reaction, with excellent product yield (up to 96%).Plant-based polyphenols are increasingly being explored as functional ingredients in emulsified food systems. In this study, the effects of sesamol on the physical and chemical stability of flaxseed oil-in-water emulsions stabilized by either phospholipids (sunflower) or proteins (whey or pea) were investigated. In the absence of sesamol, the protein-based emulsions displayed better physical stability than the phospholipid-based ones, which was related to their smaller particle diameter and higher particle charge. For the phospholipid-based emulsions, sesamol addition did not improve their physical stability, but it did inhibit lipid oxidation. In particular, it decreased the formation of secondary oxidation products, with a 65% reduction in TBAR formation compared to the control after 8 days of storage. For the protein-based emulsions, sesamol addition reduced particle aggregation and inhibited lipid oxidation, reducing the secondary oxidation products by around 85% after 19 days of storage. The inhibitory efficiency of sesamol in the pea protei