Marshall Willadsen (coatcrib8)
Tissue-nonspecific alkaline phosphatase (TNAP) is an ectoenzyme bound to the plasma membranes of numerous cells via a glycosylphosphatidylinositol (GPI) moiety. TNAP's function is well-recognized from earlier studies establishing its important role in bone mineralization. TNAP is also highly expressed in cerebral microvessels; however, its function in brain cerebral microvessels is poorly understood. In recent years, few studies have begun to delineate a role for TNAP in brain microvascular endothelial cells (BMECs)-a key component of cerebral microvessels. This review summarizes important information on the role of BMEC TNAP, and its implication in health and disease. Furthermore, we discuss current models and tools that may assist researchers in elucidating the function of TNAP in BMECs.Pyrolytic carbon microelectrodes (PCMEs) are a promising alternative to their conventional metallic counterparts for various applications. Thus, methods for the simple and inexpensive patterning of PCMEs are highly sought after. Here, we demonstrate the fabrication of PCMEs through the selective pyrolysis of SU-8 photoresist by irradiation with a low-power, 806 nm, continuous wave, semiconductor-diode laser. The SU-8 was modified by adding Pro-Jet 800NP (FujiFilm) in order to ensure absorbance in the 800 nm range. The SU-8 precursor with absorber was successfully converted into pyrolytic carbon upon laser irradiation, which was not possible without an absorber. We demonstrated that the local laser pyrolysis (LLP) process in an inert nitrogen atmosphere with higher laser power and lower scan speed resulted in higher electrical conductance. The maximum conductivity achieved for a laser-pyrolyzed line was 14.2 ± 3.3 S/cm, with a line width and thickness of 28.3 ± 2.9 µm and 6.0 ± 1.0 µm, respectively, while the narrowest conductive line was just 13.5 ± 0.4 µm wide and 4.9 ± 0.5 µm thick. The LLP process seemed to be self-limiting, as multiple repetitive laser scans did not alter the properties of the carbonized lines. The direct laser writing of adjacent lines with an insulating gap down to ≤5 µm was achieved. Finally, multiple lines were seamlessly joined and intersected, enabling the writing of more complex designs with branching electrodes and the porosity of the carbon lines could be controlled by the scan speed.Biomineralization, a well-known natural phenomenon associated with various microbial species, is being studied to protect and strengthen building materials such as concrete. We characterized Rhodococcus erythreus S26, a novel urease-producing bacterium exhibiting CaCO3-forming activity, and investigated its ability in repairing concrete cracks for the development of environment-friendly sealants. Strain S26 grown in solid medium formed spherical and polygonal CaCO3 crystals. The S26 cells grown in a urea-containing liquid medium caused culture fluid alkalinization and increased CaCO3 levels, indicating that ureolysis was responsible for CaCO3 formation. Zebularine mw Urease activity and CaCO3 formation increased with incubation time, reaching a maximum of 2054 U/min/mL and 3.83 g/L, respectively, at day four. The maximum CaCO3 formation was achieved when calcium lactate was used as the calcium source, followed by calcium gluconate. Although cell growth was observed after the induction period at pH 10.5, strain S26 could grow at a wide range of pH 4-10.5, showing its high alkali tolerance. FESEM showed rhombohedral crystals of 20-60 µm in size. EDX analysis indicated the presence of calcium, carbon, and oxygen in the crystals. XRD confirmed these crystals as CaCO3 containing calcite and vaterite. Furthermore, R. erythreus S26 successfully repaired the artificially induced large cracks of 0.4-0.6 mm width.Clear cell carcinoma (CCC) of the ovary exhibits a unique morphology and clinically malignant behavior. The eosinophilic cytoplasm includes abundant glycogen. Although the growth is slow, the prognosis is poor owing to resistance