Burnette Blum (chivemeter5)

n feed against WSSV and demonstrates a practical therapeutic strategy to control WSSV and possibly other invertebrate pathogens in shrimp aquaculture. ©2020 Romo-Quiñonez et al.This study was carried out to identify and estimate physiological function of a new type of opsin subfamily present in the retina and whole brain tissues of Japanese eel using RNA-Seq transcriptome method. A total of 18 opsin subfamilies were identified through RNA-seq. The visual opsin family included Rh2, SWS2, FWO, DSO, and Exo-Rhod. The non-visual opsin family included four types of melanopsin subfamily (Opn4x1, Opn4x2, Opn4m1, and Opn4m2), peropsin, two types of neuropsin subfamily (Opn5-like, Opn5), Opn3, three types of TMT opsin subfamily (TMT1, 2, 3), VA-opsin, and parapinopsin. In terms of changes in photoreceptor gene expression in the retina of sexually mature and immature male eels, DSO mRNA increased in the maturation group. Analysis of expression of opsin family gene in male eel brain before and after maturation revealed that DSO and SWS2 expression in terms of visual opsin mRNA increased in the sexually mature group. In terms of non-visual opsin mRNA, parapinopsin mRNA increased whereas that of TMT2 decreased in the fore-brain of the sexually mature group. The mRNA for parapinopsin increased in the mid-brain of the sexually mature group, whereas those of TMT1 and TMT3 increased in the hind-brain of the sexually mature group. DSO mRNA also increased in the retina after sexual maturation, and DSO and SWS2 mRNA increased in whole brain part, suggesting that DSO and SWS2 are closely related to sexual maturation. ©2020 Byun et al.Protein aggregation is implicated in multiple deposition diseases including Alzheimer's Disease, which features the formation of toxic aggregates of amyloid beta (Aβ) peptides. Many inhibitors have been developed to impede or reverse Aβ aggregation. Multivalent inhibitors, however, have been largely overlooked despite the promise of high inhibition efficiency endowed by the multivalent nature of Aβ aggregates. In this work, we report the success of multivalent polymer-peptide conjugates (mPPCs) as a general class of inhibitors of the aggregation of Aβ40. Significantly delayed onset of fibril formation was realized using mPPCs prepared from three peptide/peptoid ligands covering a range of polymer molecular weights (MWs) and ligand loadings. Dose dependence studies showed that the nature of the ligands is a key factor in mPPC inhibition potency. The negatively charged ligand LPFFD (LD) leads to more efficient mPPCs compared to the neutral ligands, and is most effective at 7% ligand loading across different MWs. Molecular dynamics simulations along with dynamic light scattering experiments suggest that mPPCs form globular structures in solution due to ligand-ligand interactions. Such interactions are key to the spatial proximity of ligands and thus to the multivalency effect of mPPC inhibition. Excess ligand-ligand interactions, however, reduce the accessibility of mPPC ligands to Aβ peptides, and impair the overall inhibition potency.Background Botulinum neurotoxin therapy (BoNT) is a powerful tool for treating many neurologic disorders. The U.S. Food and Drug Administration (FDA)-approved maximum onabotulinum toxin A (OnaA) dose is 400 units (U) per visit, but higher doses are commonly necessary, particularly when treating multiple body regions. Methods We collected demographics, OnaA dose, body regions injected and indications, patient-reported efficacy via 7-point Clinical Global Impression Scale (CGIS), and duration of benefit. Results Sixty-eight patients were identified receiving OnaA >400 U/session. Dystonia (n = 44) and spasticity (n = 24) were the most common indications for high-dose OnaA. Mean duration of benefit was 9 weeks (standard deviation [SD] 3). More than 70% of patients self-reported "very much improved" or "much improved" at 6 month, 1 year, and